Меню

Как работает централизованная подкачка шин

Как работает автоматическая система подкачки колёс.

На каждом колесе расположен клапан, который позволяет изолировать колесо от системы и воздействовать на него, только в случае необходимости.

Электронный блок управления (ECU), установленные позади пассажирского сиденья, отправляет команды Пневматическому блоку управления, который контролирует клапана и давление в системе, а также передает показания давления в шинах ECU .

С помощью панели управления водитель регулирует давление в шинах, а также следит за состоянием системы.

Если транспортное движется по шоссе, для того чтобы избежать повреждений, давление в шинах должно быть выше, поэтому CTIS включает в себя датчики скорости. Система автоматически надувает и спускает колеса в зависимости от скорости движения.

Воздух для работы CTIS получает от того же компрессора, что и тормозная система, реле давления гарантирует, что воздух не будет поступать в CTIS пока не заполнится тормозная система.

Несколько лет назад компания Goodyear разработала технологию самоподкачивающихся шин Air Maintenance System, не требующая установки дополнительной электроники и внешнего насоса. Миниатюрный насос и все остальные детали системы находятся непосредственно в самой шине. А в основе работы лежит принцип работы сообщающихся сосудов.

Источник

Система автоматической подкачки шин

Добрый день, уважаемые читатели. В статье вы сможете познакомиться и подробнее узнать о то, что представляет собой система автоматической подкачки шин. Технология в скором времени избавит водителей от необходимости следить за уровнем давления в колесе и накачивания их при помощи компрессора или насоса.

Будет использоваться специальная электронная начинка, отслеживающая в режиме реального времени уровень давления воздуха в шине . Если давление начнёт снижаться в результате повреждения целостности колеса, то система автоматической подкачки шин сможет нагнетать необходимое количество воздуха для продолжения движения.

Система успешно апробирована на военной технике и зарекомендовала себя с положительной стороны. На легковых автомобилях её можно встретить крайне редко. Обычно это машины руководителей государств и в массовое производство шины оснащённые автоматической подкачкой не поступали.

В ближайшие годы, ситуация может кардинальным образом измениться. Многие известные производители автомобилей и шин высказали свою заинтересованность во внедрении автоматической подкачки. Специалисты считают, что система будет востребована на рынке и водители одобрят её использование.

Почему важен контроль давления в шинах?

Отдельные водители не придают большого значения уровню д авления в колёсах . Это непростительная ошибка, которая заканчивается рядом неприятных последствий для кошелька незадачливого автовладельца. Кажется мелочь, но давление в шинах оказывает влияние на безопасность и эффективность управления автомобилем.

Выделяют 3 основных состояния колеса:

1.Недокаченное колесо.

Характерным признаком хронической недостатка воздуха в шине является неравномерный износ протектора. В этом случае средняя часть испытывает меньший уровень трения и быстро изнашиваются боковые зоны колеса.

2.Накаченное колесо.

Оптимальный уровень воздуха в шине способствует равномерному износу протектора. Площадь соприкосновения колеса и поверхности дороги максимальная.

3.Перекаченное колесо.

Максимальный износ протектора происходит в средней части. Боковые стороны практические не соприкасаются с дорожным полотном.

Недостаток или избыток давления в шине приводит к преждевременному износу протектора и снижения управляемости машиной.

Многие водители в силу недостатка времени или лени не контролируют должным образом параметр. Зачастую во всех 4-х колёсах можно обнаружить различный уровень давления воздуха.

Система информирования о текущем состоянии давления в колесе, которая устанавливается в современных машинах не способна решить проблемы. Многие водители обращают внимание на показатели когда давление воздуха стремится к нулю в шине.

Вредные последствия использования шины с неправильным давлением воздуха:

  1. Неравномерный износ.
  2. Сокращение срока использования в 3 раза.
  3. Увеличение тормозного пути.
  4. Снижение управляемости.
  5. Снижение уровня сцепления с дорожным покрытием.
  6. Увеличение расхода топлива.
  7. Вероятность повреждения увеличивается в 2 раза.

Подробнее о шинах и дисках можно узнать на сайте
http://wheel-info.ru/ , где содержится масса полезной и интересной информации.

Что собой представляет автоматическая подкачка шин?

Система автоматической подкачки шин даёт возможность в режиме реального времени изменять уровень давления воздуха. Первоначально она создавалась с целью эффективности работы резины на различных поверхностях.

Использование Сentral tire inflation system (CTIS) или централизованная система подкачки шин. Сегодня активно применяется на военной и сельскохозяйственной технике.

Даёт возможность поддерживать оптимальный уровень давления в шине даже в случае нарушения целостности.

Устройство CTIS:

1.Клапан.

Установлен изолированно на каждом колесе.

2.Основной блок управления.

Установлен в салоне машины.

3.Пневматический блок управления.

Получает сигналы от основного блока управления. Обеспечивает контроль клапана и передаёт показания о давлении воздуха в шинах на основной блок управления в режиме реального времени.

4.Панель управления.

Служит для ручного управления давлением в шине.

5.Датчики скорости.

Система в автоматическом режиме регулирует давление в зависимости от скорости движения.

Первые наработки в области автоматических систем накачки воздуха в шины успешно существуют и опробованы. Компания Goodyear представила шины Air Maintenance System, где компактный насос и все необходимые элементы системы установлены непосредственно внутри колеса.

Источник

Устройство централизованной системы регулирования давления воздуха в шинах

Автомобили повышенной проходимости ЗИЛ-157К, ЗИЛ-157 и Урал-375 имеют специальные эластичные шины и централизованную систему регулирования давления воздуха в них на ходу автомобиля.

Применение эластичных шин и централизованной системы регулирования давления воздуха в них позволяет:

  • повышать проходимость автомобили на труднопроходимых участках пути (рыхлый песок, болотистая местность, сильно разбитые грунтовые дороги, снежная целина);
  • продолжать движение автомобиля до парка без смены колес в случае повреждения камеры путем непрерывной подкачки воздуха в поврежденную шину;
  • постоянно наблюдать за давлением воздуха в каждой из шин автомобиля и доводить до нормы на ходу автомобиля.

Устройство и работа централизованной системы регулирования давления в шинах автомобилей ЗИЛ-157К, ЗИЛ-157 и Урал-375 одинаковы; различаются они между собой только конструкцией отдельных деталей и узлов.

Система регулирования давления воздуха в шинах входит в общую пневматическую систему автомобиля и состоит из центрального крана 2 управления давлением воздуха в шинах, блока шинных кранов 3, междубаллонного редуктора 5, запорных кранов 4 на колесах, блоков сальников 5, манометра 10 и трубопроводов с гибкими шлангами 6.

Рис. Схема централизованной системы регулирования давления воздуха в шинах (автомобиля Урал-375): А — подвод воздуха к стеклоочистителям; Б — подвод воздуха к манометру; 1 — воздушные баллоны (два задних); 2 — центральный кран управления давлением; 3 — блок шинных кранов; 4 — запорный кран; 5 — блок сальников; 6 — гибкий шланг; 7 — передний воздушный баллон; 8 — междубаллонный редуктор; 9 — манометр; 10 — шинный манометр

Регулирование давления воздуха в шинах производится центральным краном, установленным в кабине. В кране имеются три клапана: впускной 6, сообщающий блок шинных кранов с воздушными баллонами, выпускной 4, сообщающий блок шинных кранов с атмосферой, и обратный 3, предотвращающий выпуск воздуха из шин в пневматическую систему, когда давление в ней ниже, чем в шинах.

Рис. Центральный кран управления давлением воздуха в шинах: 1 — регулировочный винт; 2 — рычаг крана; 3 — обратный клапан; 4 — выпускной клапан; 5 — корпус крана; 6 — впускной клапан

Рычаг 2 крана управления может быть установлен в трех положениях: правое положение — накачка шин, среднее — нейтральное, левое — выпуск воздуха из шин в атмосферу.

Рис. Блок шинных кранов: а — отдельный кран; б — блок кранов; 1 — вентиль; 2 — колпачковая гайка; 3 — сальник; 4 — шток; 5 — гайка; 6 — пробка; 7 — угольник шинного крана; 8 — седло крана; 9 — сальник

Блок шинных кранов установлен в кабине. Ом имеет шесть вентилей, которые разобщают трубопроводы, идущие к каждой шине от крана управления. Когда вентили открыты, все шины соединены между собой и с центральным краном управления.

Междубаллонный редуктор установлен между баллонами 7 и 1 и предназначен для обеспечения в пневматической системе привода тормозов давления, достаточного для надежного торможения автомобиля.

Нагнетаемый компрессором в баллон 7 воздух поступает к тормозному крану.

При достижении в баллоне 7 давления выше 4,5 кг/см2 диафрагма 5 междубаллонного редуктора, сжимая пружину 4, прогибается вверх и открывает клапан 6. Только при этом воздух из переднего воздушного баллона 7 начинает поступать в остальные два баллона.

Рис. Междубаллонный редуктор: А — от переднего воздушного баллона; Б — к заднему воздушному баллону; 1 — регулировочный болт; 2 — крышка; 3 — тарелка пружины; 4 — пружины; 5 — диафрагма; 6 — клапан; 7 — обратный клапан; 8 — кронштейн; 9 — штуцер; 10 — угольник; 11 — воздухоподводящие каналы

Если при торможении давление в баллоне 7 станет ниже, чем в других баллонах, на 0,5 кг/см2, запас воздуха из этих баллонов через обратный клапан 7 междубаллонного редуктора поступит в тормозную систему, обеспечивая надежное торможение автомобиля.

Запорные краны 4 устанавливаются на каждом колесе и предназначаются для разобщения каждой камеры шины от системы регулирования давления, что необходимо при длительных стоянках. Блок сальников 5 устанавливается в ступице каждого колеса. Он обеспечивает герметичность соединения канала в неподвижной цапфе и канале во вращающейся полуоси.

Для снижения давления в шинах рычаг центрального крана управления ставят в левое положение. При этом выпускной клапан крана открывается и воздух из шин через открытые запорные краны по каналам в полуосях и цапфах, по гибким шлангам и трубопроводам через открытые вентили блока шинных кранов и центральный кран уходит в атмосферу. Когда давление в шинах достигнет необходимой величины, рычаг крана управления ставят в среднее положение. Выпускной клапан закрывается, и выпуск воздуха из шин прекращается.

Для накачки шин рычаг крана управления ставят в правое положение. При этом открывается впускной клапан и воздух из баллонов начинает поступать в шины. Накачка шин производится до требуемого давления.

На дорогах с твердым покрытием давление в шинах должно соответствовать требованиям заводской инструкции.

Рис. Кран управления давлением воздуха в шинах автомобиля ЗИЛ-157К: А — в шины; Б — в атмосферу; В — из воздушного баллона; 1 — корпус; 2 — распорное кольцо; 3 — втулка; 4 — резиновое кольцо; 5 — опорная шайба; 6 — замочное кольцо; 7 — направляющая золотника; 8 — золотник

Снижать давление следует только перед преодолением труднопроходимых участков пути.

Во время движения вентили блока шинных кранов и запорные краны на колесах должны быть полностью открыты, а на длительных стоянках во избежание утечки воздуха из шин запорные краны закрываются.

Давление воздуха контролируют манометром. Давление в шинах замеряют при открытых запорных кранах на колесах и вентилях блока шинных кранов. Рычаг центрального, крана управления обязательно должен при этом находиться в среднем положении.

На автомобиле ЗИЛ-157К устанавливается центральный кран управления золотникового типа.

В корпусе 1 крана перемещается золотник 8, который уплотняется в корпусе резиновыми кольцами 4. Замочное кольцо 6 ограничивает перемещение золотника в корпусе. Золотник соединен тягой с рычагом управления крана.

При установке рычага управления в положение «накачка» золотник займет крайнее левое положение. Проточка на золотнике устанавливается против левого уплотняющего кольца, и воздух из воздушного баллона через зазор между золотником и уплотняющим кольцом направится к блоку шинных кранов и далее в шины.

При переводе рычага крана управления в положение «выпуск воздуха» золотник перемещается в крайнее правое положение, проточка на золотнике устанавливается против правого уплотняющего кольца, и воздух из шин через образовавшийся зазор уходит в атмосферу.

Источник

Легковые автомобили с автоматической подкачкой колес

Как работает автоматическая система подкачки колёс. » Хабстаб

Хаммер и многие военные машины, уже много лет оснащаются системой подкачки колёс. Это сделано для улучшения проходимости автомобиля, по плохим дорогам или в плохих погодных условиях.
В настоящее время, большинство массово производимых автомобилей оснащаются только системой мониторинга давления в шинах.
Давайте рассмотрим, какие преимущества предоставляет такая система, ведь сильно спущенное колесо можно различить и без неё, а чуть спущенное не создает проблем. Первое о чём хотелось бы сказать, что давление в колесе может уменьшаться во время обычной езды, например, при попадании колеса в яму или при любом другом ударе, также на изменение давления влияет сезонное изменение температуры. Такое изменение давления в шинах не имеет визуального эффекта, но приводит к увеличению расхода топлива, быстрому износу протектора и ухудшает управляемость автомобиля. Давайте рассмотрим подробнее как это происходит.

На картинку выше видно, что в зависимости от давления в шинах, изменяется площадь соприкосновения с поверхностью, а следовательно, и сила трения. При низком давлении в шинах, площадь соприкосновения увеличивается, а следовательно, увеличивается сила трения, это может быть полезным в условиях тяжелой проходимости, но при движении по асфальтной дороге приводит к повышенному расходу топлива. Также в случае если давление в какой-либо из шин автомобиля существенно занижено, это может привести к разбортировке колеса во время движения, про такие ситуации водители говорят “переобулся на ходу”.
Что касается износа, уменьшение давления на 20% от номинального, сокращает ресурс шины в 3 раза.
Очевидно, что если давление в шинах отличается это ухудшает управляемость автомобиля, также если давление выше номинального, то при повороте на большой скорости, из-за плохого сцепления колеса с дорогой, можно потерять управление.
Ещё одним существенным плюсом является, возможность во время движения узнать о том, что пробилось колесо. Также узнать о том, что пробито колесо можно по косвенным признакам, например, по расстоянию, которое проходит колесо за один оборот, в этом случае источником данных служат датчики ABS.
Давайте рассмотрим централизованную систему подкачки шин(CTIS).
CTIS позволяет контролировать давление воздуха в каждой шине, разрабатывалась она для повышения эффективности работы на различных поверхностях. Снижение давления воздуха в шине, как мы упоминали выше, создаёт большую площадь контакта между шиной и грунтом, это позволяет наносить меньший ущерб поверхности, поэтому она нашла применение в сельскохозяйственных отраслях. Ещё одна функция CTIS — это поддержание давления в колесе в случае прокола.
Существуют два основных производители CTIS: американская корпорации Dana и Французская Syegon. Dana выпускает две версии CTIS, для использования в военных целях (PSI) и для коммерческого использования (TPCS).
На рисунке выше показано общее устройство CTIS.

На каждом колесе расположен клапан, который позволяет изолировать колесо от системы и воздействовать на него, только в случае необходимости.

Электронный блок управления (ECU), установленные позади пассажирского сиденья, отправляет команды Пневматическому блоку управления, который контролирует клапана и давление в системе, а также передает показания давления в шинах ECU .

С помощью панели управления водитель регулирует давление в шинах, а также следит за состоянием системы.

Если транспортное движется по шоссе, для того чтобы избежать повреждений, давление в шинах должно быть выше, поэтому CTIS включает в себя датчики скорости. Система автоматически надувает и спускает колеса в зависимости от скорости движения.

Воздух для работы CTIS получает от того же компрессора, что и тормозная система, реле давления гарантирует, что воздух не будет поступать в CTIS пока не заполнится тормозная система.

Несколько лет назад компания Goodyear разработала технологию самоподкачивающихся шин Air Maintenance System, не требующая установки дополнительной электроники и внешнего насоса. Миниатюрный насос и все остальные детали системы находятся непосредственно в самой шине. А в основе работы лежит принцип работы сообщающихся сосудов.

Система автоматической подкачки шин

Добрый день, уважаемые читатели. В статье вы сможете познакомиться и подробнее узнать о то, что представляет собой система автоматической подкачки шин. Технология в скором времени избавит водителей от необходимости следить за уровнем давления в колесе и накачивания их при помощи компрессора или насоса.

Читайте также:  Как отремонтировать шину бензопилы штиль

Будет использоваться специальная электронная начинка, отслеживающая в режиме реального времени уровень давления воздуха в шине. Если давление начнёт снижаться в результате повреждения целостности колеса, то система автоматической подкачки шин сможет нагнетать необходимое количество воздуха для продолжения движения.

Система успешно апробирована на военной технике и зарекомендовала себя с положительной стороны. На легковых автомобилях её можно встретить крайне редко. Обычно это машины руководителей государств и в массовое производство шины оснащённые автоматической подкачкой не поступали.

В ближайшие годы, ситуация может кардинальным образом измениться. Многие известные производители автомобилей и шин высказали свою заинтересованность во внедрении автоматической подкачки. Специалисты считают, что система будет востребована на рынке и водители одобрят её использование.

Почему важен контроль давления в шинах?

Отдельные водители не придают большого значения уровню давления в колёсах. Это непростительная ошибка, которая заканчивается рядом неприятных последствий для кошелька незадачливого автовладельца. Кажется мелочь, но давление в шинах оказывает влияние на безопасность и эффективность управления автомобилем.

Выделяют 3 основных состояния колеса:

1.Недокаченное колесо.

Характерным признаком хронической недостатка воздуха в шине является неравномерный износ протектора. В этом случае средняя часть испытывает меньший уровень трения и быстро изнашиваются боковые зоны колеса.

2.Накаченное колесо.

Оптимальный уровень воздуха в шине способствует равномерному износу протектора. Площадь соприкосновения колеса и поверхности дороги максимальная.

3.Перекаченное колесо.

Максимальный износ протектора происходит в средней части. Боковые стороны практические не соприкасаются с дорожным полотном.

Недостаток или избыток давления в шине приводит к преждевременному износу протектора и снижения управляемости машиной.

Многие водители в силу недостатка времени или лени не контролируют должным образом параметр. Зачастую во всех 4-х колёсах можно обнаружить различный уровень давления воздуха.

Система информирования о текущем состоянии давления в колесе, которая устанавливается в современных машинах не способна решить проблемы. Многие водители обращают внимание на показатели когда давление воздуха стремится к нулю в шине.

Вредные последствия использования шины с неправильным давлением воздуха:

  1. Неравномерный износ.
  2. Сокращение срока использования в 3 раза.
  3. Увеличение тормозного пути.
  4. Снижение управляемости.
  5. Снижение уровня сцепления с дорожным покрытием.
  6. Увеличение расхода топлива.
  7. Вероятность повреждения увеличивается в 2 раза.

Подробнее о шинах и дисках можно узнать на сайте
http://wheel-info.ru/, где содержится масса полезной и интересной информации.

Что собой представляет автоматическая подкачка шин?

Система автоматической подкачки шин даёт возможность в режиме реального времени изменять уровень давления воздуха. Первоначально она создавалась с целью эффективности работы резины на различных поверхностях.

Использование Сentral tire inflation system (CTIS) или централизованная система подкачки шин. Сегодня активно применяется на военной и сельскохозяйственной технике.

Даёт возможность поддерживать оптимальный уровень давления в шине даже в случае нарушения целостности.

Устройство CTIS:

1.Клапан.

Установлен изолированно на каждом колесе.

2.Основной блок управления.

Установлен в салоне машины.

3.Пневматический блок управления.

Получает сигналы от основного блока управления. Обеспечивает контроль клапана и передаёт показания о давлении воздуха в шинах на основной блок управления в режиме реального времени.

4.Панель управления.

Служит для ручного управления давлением в шине.

5.Датчики скорости.

Система в автоматическом режиме регулирует давление в зависимости от скорости движения.

Первые наработки в области автоматических систем накачки воздуха в шины успешно существуют и опробованы. Компания Goodyear представила шины Air Maintenance System, где компактный насос и все необходимые элементы системы установлены непосредственно внутри колеса.

Это интересно

как подкачать колесо на ВАЗ 21213 декомпрессором, автоподкачка

Любой опытный автолюбитель не раз сталкивался с проблемой спущенного колеса на дороге. Этот дефект влияет не только на комфорт поездки, но и на исправность транспортного средства. Дело в том, что автомобильный концерн сам диктует требуемое давление в баллоне, основываясь на инженерных расчётах. Эти данные участвуют в работе амортизаторов, поэтому данные показатели необходимо время от времени контролировать и в случае отклонения срочно исправлять. Все водители, особенно часто перемещающиеся на автомобиле по загородным трассам, должны иметь в багажнике оборудование, с помощью которого осуществляется подкачка колёс.

Признаки потери давления в колесе

Для того чтобы водитель мог вовремя исправить проблему спущенного колеса во время поездки, он должен понимать, что далеко не всегда потеря давления характеризуется ездой на ободе. Такие ситуации имеют место лишь при наезде на крупное острое препятствие, когда простой подкачкой уже проблему не решить. Таким образом, узнать о потере давления можно по следующим явным признакам:

Подкачка покрышки

  • Прежде всего, на дороге водитель ощущает, что автомобиль значительно начинает отклоняться от прямолинейной траектории движения, и данное изменение направления только возрастает от увеличения скорости. Данный признак связан в основном с проколом или потерей давления в переднем колесе.
  • Если же проблема наступила с задней шиной, водитель, как правило, не ощущает неудобств до тех пор, пока не слышит биение резины о дорожное полотно. Однако, когда водитель тщательно контролирует и следит за любым изменением в поведении своего «железного коня», то при движении в прямом направлении он ощутит перекос и лёгкий наклон именно в ту сторону, где выявлена проблема.
  • Следует заметить, что чем выше профиль резины, тем больше ощущается спущенное колесо в салоне. А на спортивных авто с высотой профиля покрышки менее 40 мм проблема может достичь такого масштаба, что водитель услышит уже скрежет литого диска об асфальт при полностью сдутой покрышке.

Для того чтобы неожиданно не попасть в неприятную ситуацию на дороге, автолюбителю следует хотя бы 1 раз в неделю проверять давление в колёсах при помощи специального портативного компрессора либо на станции шиномонтажа. Кроме того, на многих заправках от известных нефтяных компаний часто имеется бесплатная услуга подкачки колёс и проверки давления в шинах, использованием которой не следует пренебрегать.

Центральная система подкачки колёс на ВАЗ 21214

Как правильно подкачать колёса на различных автомобилях

В зависимости от марки, класса, размера и веса автомобиля, техника подкачки колёс не меняется, но остаются нюансы, каждый из которых свойственен конкретному типу транспортного средства.

Так, подкачка шин для автомобиля выглядит следующим образом:

  • Как подкачать колесо на ВАЗ 21213 декомпрессором? Если речь идёт о знаменитой «Ниве 4х4» или ВАЗ 21213, то рекомендованное давление в покрышках составляет 0,21 МПа для передних колёс и 0,19 МПа для задних, что эквивалентно показаниям на манометре 2,1 кгс/см² и 1,9 кгс/см² соответственно. Для того чтобы подкачать колёса декомпрессором, водителю следует проделать следующие шаги:
  • Нужно убедиться, что автомобиль стоит на ровной твёрдой поверхности, и каждое из колёс испытывает одинаковую нагрузку. В противном случае при движении получится неравномерное распределение давления в шинах, что приведёт к вибрации.
  • Для начала необходимо открутить колпачки абсолютно на каждом ниппеле для того, чтобы образовался доступ к клапану.
  • Далее необходимо прижать сосок декомпрессора на ниппеле, параллельно наблюдая за показанием стрелки манометра и фиксируя значение для каждой покрышки.
  • Если какой-то из баллонов не соответствует требуемому давлению, нужно включить переключатель на ручке шланга или на самом корпусе устройства, в зависимости от типа его строения, после чего воздух начнёт автоматически нагнетаться в баллон.
  • По мере подкачки нужно тщательно следить за показаниями прибора, и если шина оказалась перекачанной, нужно срочно выключить прибор и простым поворотным движением винта на ручке компрессора стравить излишки воздуха.
  • По завершении процедуры нужно вернуть пластиковые колпачки на место, и водитель может продолжать движение.
  • В случае, когда длины шланга не хватает для того, чтобы дотянуться сразу до всех 4 колёс, мастера и автолюбители нередко используют специальный резиновый, пластиковый или металлический удлинитель подкачки внутреннего колеса. Он представляет собой трубку с вентильной конструкцией и собственным поворотным соском для удобства использования его на колёсах.

Пункт подкачки колёс на АЗС

  • Система подкачки колес КамАЗ 43118. Когда необходимо осуществить подкачку шины на грузовике, для примера, на КамАЗе 43118, алгоритм действий должен заключаться в следующих шагах водителя:
  • На КамАЗах давление воздуха должно отличаться в зависимости от типа местности, где эксплуатируется транспортное средство и составляет для болотистой дороги 0,8; для плотного снежного покрова – 1,1; для песчаного основания – 2,0 и для всех прочих типов твёрдого покрытия – 2,0…2,1 кгс/см².
  • Система подкачки колёс управляется самим водителем непосредственно из кабины путём поворота специального переключателя, который активизирует открытие специальных запорных вентилей, и по системе манжет и трубопроводов воздух под давлением нагнетается в баллоны грузовика.
  • При необходимости проведения шиномонтажа на каждом колесе техники установлены персональные краны для прекращения подачи или забора воздуха. Каждый из них водитель может самостоятельно перекрыть, тем самым отсоединив автоматику, что даёт полноценно заняться заменой колеса или его ремонтом.

Трубки подкачки покрышек на КамАЗе

При подкачке не нужно усиливать давление выше отведённого максимума. И наоборот, не нагнетать недостаточное количество воздуха в колесо, так как всё это приведёт к преждевременному износу покрышек и подвески. Кроме того, нужно следить за тем, чтобы в каждой шине на одной оси были строго одинаковые показатели для того, чтобы в дальнейшем водитель не испытывал вибрации при движении, и автомобиль не уводило в сторону.

Как пользоваться системой подкачки колёс на АЗС

Как было сказано выше, многие благоустроенные автозаправки среди своих многочисленных сервисов имеют услуги по подкачке колёс при помощи специально установленных компрессоров со шлангами. Как правило, данные устройства стоят недалеко от выезда с АЗС, в тех местах, где автолюбитель может припарковаться, не мешая при этом движению. Для того чтобы правильно накачать колёса, водителю необходимо проделать следующие шаги:

  • Как подкачать колесо на заправке? Сначала нужно подъехать как можно ближе к станции подкачки таким образом, чтобы шланг со специальным пистолетом мог легко дотянуться до любого колеса автомобиля.
  • Для проверки давления колёс нужно снять пластиковые наконечники на ниппелях, после чего поднести пистолет к клапану и слегка надавить на него, замеряя показатели манометра.

Схема датчиков подкачки колёс

  • В каждом автомобиле допустимое давление в шинах указано на пороге при открывании водительской двери. Именно для этих целей водителю необходимо перед проверкой своих колёс взглянуть на эти показатели, запомнив каждое из них. Следует быть внимательным, так как давление на передней и задней оси может быть как идентичным, так и отличаться из-за неравномерного разделения масс в автомобиле.
  • Если давление в шинах превышает допустимые показатели, водителю следует стравить часть воздуха до тех пор, пока стрелка на манометре не опустится до приемлемых показателей.
  • Когда необходимо накачать колесо, водителю следует помнить, что на пистолете есть специальный замок, который нужно защёлкивать в каждом случае нагнетания воздуха, или слишком мощный его поток не позволит дать нормальное давление в колесе.
  • В случае, когда давления не хватает, на пистолете есть специальная кнопка, нажав которую водитель услышит работу компрессора, и воздух под давлением начнёт нагнетаться в покрышку, о чём, опять же, покажет показатель на приборе.

Если автолюбитель отвлечётся и перекачает колесо, то оно может потерять пластические деформации, в результате чего лопнет или просто не сможет вернуться в прежнее положение. Структура резиновой покрышки нарушится, и при снятии деформаций шина не сможет обрести первоначальную форму.

Как работает автоматическая система подкачки колёс

Если автомобиль обладает повышенной проходимостью и используется для выполнения стратегических задач, его колёса должны всегда поддерживать оптимальное давление. На таких транспортных средствах устанавливается автоматическая система подкачки колёс, работающая по следующему принципу:

  • Всего существует 2 основных компании, ставящие подобное оборудование на авто – Dana (США) и Syegon (Франция).
  • Автоподкачка колес, устройство. Принцип действия основан на наличии клапана, расположенного на каждом колесе, и это устройство автоматически служит запорным вентилем для отключения конкретного баллона от системы для его обслуживания или замены.
  • Также имеется контрольный блок (ECU), который отдаёт команды на клапаны, поддерживая давление в заранее выставленных рамках.
  • На переднем мониторе водителя имеется интерфейс, при помощи которого он следит за давлением в колёсах, и система автоматически предупреждает его о неисправности.
  • Если давление в шине выходит за установленные рамки, владелец транспортного средства нажатием соответствующей кнопки посылает сигнал на блок управления, который активизирует процессор и нагнетает воздух через клапаны в баллон.

Для установки такого оборудования вовсе не требуется дополнительный компрессор, так как система полностью интегрируется с нагнетателем воздуха для тормозов автомобиля.

Центральная система подкачки колёс

Для профессионалов, деятельность которых неразрывно связана со специальными транспортными средствами, например, военной техники, автомобилей, предназначенных для спасения человеческих жизней, а также в иных случаях, когда требуется срочная подкачка колёс, автоматика на клапанах усовершенствована до такой степени, что баланс давления поддерживается всегда, вне зависимости от времени и места эксплуатации транспортного средства. Так, данная система устроена следующим образом:

  • Внутри покрышки стоит электронный датчик, который контролирует любое изменение давления внутри колеса, и при необходимости даёт об этом знать центральному контроллеру. Происходит это как при проколе колеса, так и при спускании воздуха через ниппель, что меняет состояние газа внутри покрышки и вызывает неравномерность подкачки шин.

Принцип действия автоматической системы подкачки колёс

  • Сигнал поступает на центральный компьютер, и в зависимости от типа системы и её настройки, либо эта информация выводится на специальные сигнальные устройства для водителя, либо, когда весь процесс происходит без участия водителя, система автоматически посылает команду для подкачки.
  • Водитель в любом случае должен знать о неисправности, так как она может быть вызвана проколом колеса, а в редких случаях деформацией колёсного диска. Поэтому при нескольких неудачных попытках нагнетания давления компьютер сообщает ему о необходимости устранить проблему на шиномонтаже.

Данная система по сложности мало чем отличается от охранной сигнализации, и может быть установлена на каждый автомобиль, включая ВАЗовские модификации. Однако её относительно высокая стоимость не всегда оправдывает средства, так как водителю компактной машины дешевле будет поменять колесо в случае аварии, но его личная безопасность при этом снижается.

Подкачивать колёса каждому автолюбителю следует регулярно и ради собственной безопасности во время заправки, регулярного ТО или же на автомойке, где имеется подобная услуга. Кроме того, в багажнике каждого водителя, эксплуатирующего своё транспортное средство вдали от населённых пунктов, должен храниться портативный компрессор или ручной насос для того, чтобы он мог быстро устранить данную проблему.

Если же авто эксплуатируется в экстремальных местах, то его следует оснастить централизованной системой подкачки воздуха, чтобы внезапно спущенное колесо не стало причиной большой проблемы.

Компания Aperia начала реализацию устройств halo для автоподкачки шин — журнал За рулем

Американская фирма Aperia Technologies начала реализацию устройств halo для автоподкачки шин на большом коммерческом транспорте. Новое изобретение, утверждают создатели, позволит снизить эксплуатационные расходы транспортных компаний.

self-inflating-tire-inline_no_copyright

Расчетный беспроблемный пробег устройства halo — 800 000 км. Система автоподкачки прошла серьезные тесты — испытательные образцы «накатали» в сумме более 12 500 000 км

Самонакачивающаяся шина — идея, появившаяся не вчера. Компании — производители покрышек давно пытаются разработать такую «обувку», которая не требовала бы постоянного ухода. Дело не только в удобстве — низкое или избыточное давление в покрышке уменьшает ее ресурс, увеличивает расход топлива, а также негативно влияет на управляемость ТС и его плавность хода. В худшем случае это может привести к разрыву шины и как следствие создать аварийную ситуацию на дороге. Решение проблемы в последнее время пытался найти промышленный гигант Goodyear — в 2011 году компания разработала «неприхотливую» шину, но дальше прототипа AMT дело не зашло. А вот американская фирма Aperia Technologies, которую в 2010-м основали два выпускника Стэнфордского университета, все-таки смогла внедрить в жизнь давнюю мечту автомобилистов. Правда, подошли инженеры-предприниматели с другой стороны — они разработали компактное устройство для автоподкачки шины.

Читайте также:  Can шина парковочные радары

Для начала нужно внести некоторую ясность — изобретение Джоша Картера и Брэндона Ричардсона из-за относительно больших массы и габаритов применимо только к крупногабаритным машинам, в частности, грузовикам (в этом случае это наиболее оправдано экономически). Механическое устройство массой 2,3 кг крепится к ступице и работает по принципу маятника — воздушный насос использует энергию качения колеса, а сигнал к действию дает обыкновенный датчик давления. Каковы выгоды? До 2200 долларов США — годовая экономия на увеличенном ресурсе шин, примерно 1000 долларов — на горючем (потребление уменьшается на пару-тройку процентов), плюс не стоит забывать о снижении временных затрат на эксплуатацию. Кстати, на установку halo уходит от 5 до 10 минут. О ценах информации на официальном сайте производителя нет, но заказать устройство можно уже сейчас.

Журнал «За рулем» протестировал восемь образцов приборов для контроля давления в шинах. Подробнее об этом в материале «Лекарство от давления: тестируем шинные манометры».

Самоподкачивающиеся шины: принцип работы | Журнал Популярная Механика

В мире кольцевых гонок говорят так: если колеса еще не скользят, значит, ты едешь недостаточно быстро, а если уже скользят — значит, слишком быстро. По сути все, что есть в автомобиле — двигатель, трансмиссия, подвеска, да и собственно водитель, — нужно лишь для того, чтобы полностью реализовать потенциал шин.

Michelin Primacy 3 Края блоков протектора летней шины Michelin Primacy 3 закруглены с целью снижения тормозного пути. Традиционные прямоугольные края в скольжении могут зацепиться за дорожное полотно, тем самым наклонив и приподняв весь блок над асфальтом. Закругленные блоки даже в скольжении соприкасаются с дорогой всей своей поверхностью.

Nokian Hakka Green Сосновое масло, добавленное в состав резины Nokian Hakka Green, при деформации шины снижает трение на молекулярном уровне, тем самым уменьшая нагревание и связанные с ним потери энергии. По утверждению Nokian, технология позволяет снизить сопротивление качению на 15%.

Углубления на стенках продольных канавок протектора напоминают поверхность мяча для гольфа и работают точно так же, снижая сопротивление воздуха и уровень шума.

За пределами гоночного трека требований к шинам становится еще больше, хотя бы потому, что у нас нет возможности заехать на пит-стоп и заменить слики на дождевую резину, даже если начнется библейский ливень. Шины, которые мы используем, должны уметь всё и сразу. Новые разработки в этой области появляются постоянно. И если над безвоздушными шинами Tweel инженеры Michelin бьются без малого десять лет, то цветные покрышки эта марка готова производить хоть завтра — был бы спрос.

Есть и более практичные разработки, как, например, самоподкачивающаяся шина Goodyear. Эта экспериментальная система получила название Air Maintenance Technology. Между прочим, ничего запредельно сложного в ней нет. Вдоль протектора уложили трубку, которая сдавливается в пятне контакта. При вращении колеса создается эффект, как будто валик прокатывается вдоль трубки, выжимая из нее воздух. В такой покрышке будут также датчик давления и клапан.

По словам разработчиков, в серию такая шина попадет не скоро, лет через десять.

А ведь проблема существует уже сегодня: исследования, проведенные Goodyear, показали, что в Европе 40% водителей вообще не следят за давлением в шинах. Такая беспечность, к слову, свойственна не только автомобилистам. Специалисты Dunlop выяснили, что на 85% мотоциклов заднее колесо недостаточно хорошо накачано. Что касается автомобилей, то дефицит воздуха в покрышке оборачивается сразу двумя неприятными последствиями: повышенным расходом топлива и увеличением вредных выхлопов.

Чтобы посмотреть, как работают современные летние покрышки, мы решили разделить их «поле деятельности» на четыре основных режима: езда по прямой, поворот, торможение и движение по мокрому покрытию.

Полный вперед

Самый естественный режим движения для покрышек, подвески, коробки передач, мотора и водителя — это езда по прямой с постоянной скоростью. Однако даже при такой езде покрышки страдают от нескольких врожденных «болезней», с которыми стараются бороться все крупные производители.

Одна из важнейших проблем — это шум. По действующим в Европе правилам на скорости 80 км/ч покрышка не должна повышать голос свыше 84 дБ. Уровень шума зависит от множества факторов, в том числе ширины протектора и жесткости смеси, из которой он сделан. Именно поэтому спортивные шины слышны лучше обычных.

Ради снижения уровня шума разработчики покрышек пускают в ход довольно экзотические приемы. Например, в протекторе покрышек Bridgestone Turanza T001 есть специальные шумопоглощающие канавки, работающие по принципу резонатора Гельмгольца.

Этот простейший акустический прибор изначально представлял собой сосуд сферической формы с открытой горловиной, который позволял усиливать или, наоборот, глушить звуковые волны определенной частоты. В покрышке эта конструкция выглядит, конечно, иначе, но принцип работы у нее тот же. Судя по предоставленным маркой Bridgestone графикам, использование этих резонаторов позволило снизить уровень шума в частотном диапазоне 750−1250 Гц.

Инженеры Continental поступили проще, разработав для модели ContiCrossContact LX 2 протектор, плечевые зоны которого работают еще и как барьер против шума, исходящего от блоков центральной части шины. Эта модель предназначена для кроссоверов и внедорожников, а потому имеет несколько специфических особенностей. Например, протектор покрыт системой мелких поперечных канавок, которые на бездорожье работают как грунтозацепы, повышая проходимость. А форма крупных продольных канавок способствует самоочищению протектора.

Еще один интересный способ борьбы с шумом изобрела компания Nokian. Стенки продольных канавок на протекторах покрышек семейства Hakka сделаны негладкими. Их покрывают небольшие полусферические углубления, как на мяче для гольфа. При качении они снижают сопротивление воздуха, тем самым уменьшая и уровень шума, и сопротивление качению, и склонность к перегреву. Технология получила название Silent Groove.

Сопротивление качению — это еще одна проблема, связанная с движением по прямой. Прижимаясь к асфальту в пятне контакта, покрышка деформируется, и эта деформация поглощает часть энергии, которая могла бы быть потрачена собственно на движение.

На самом деле сопротивление качению — это комплексное явление, состоящее из почти десятка отдельных физических процессов, но нас в данном случае больше волнует другое: его реальное влияние на динамику автомобиля намного более существенно, чем может показаться. Сопротивление качению в среднем действует на машину примерно так же, как аэродинамическое сопротивление на скорости за 70 км/ч.

Известно, что холодные покрышки сопротивляются качению значительно сильнее, чем прогретые. Но мы-то ездим не по гоночному треку, и прогревочных кругов у нас нет. А в штатных режимах движения выход на оптимальную рабочую температуру происходит через пару-тройку десятков километров, тогда как в городских условиях машина за одну поездку проезжает значительно меньше. Дополнительное сопротивление качению возникает на недокачанных шинах.

Снизить подобные потери стремятся все разработчики покрышек. Например, инженеры марки Cordiant, создавая модель Road Runner, использовали смесь на основе натурального каучука и высокодисперсного техуглерода. Это позволило получить быстро прогревающийся, но не склонный к перегреву протектор с низким сопротивлением качению. Дополнительный эффект удалось получить, увеличив жесткость протектора за счет использования полумостов в соединении шашек.

Право руля

Пока машина едет по прямой, ее правые и левые колеса загружены одинаково. Когда водитель поворачивает руль, все меняется, причем не в лучшую сторону. Ведь когда автомобиль проходит поворот, его вес перераспределяется и ложится главным образом на внешние колеса.

Чем больший вес приходится на колесо, тем выше его коэффициент сцепления с дорожным полотном, и наоборот. Но беда в том, что эта зависимость не линейная. Коэффициент сцепления увеличивается медленнее, чем растет приходящийся на колесо вес, а уменьшается существенно быстрее, чем колесо разгружается. На практике это означает, что в повороте общее «количество» сцепления с дорогой меньше, чем при движении прямо, а как раз в момент маневра оно и нужно больше всего.

Ведь здесь на колесо действует центробежная сила, которая стремится сорвать его с траектории. В результате получается, что в повороте основная часть нагрузки приходится даже не на две покрышки из четырех, а на внешние боковины этих покрышек.

Чтобы водителю было проще контролировать машину на высокой скорости, компания Nokian применяет в модели Hakka Black многослойный протектор. Его внешний слой изготовлен из смеси Nordic Intelligent UHP Silica, специально разработанной для северных стран.

Он обеспечивает надежное прилегание к дорожному полотну как в жаркий летний день, так и холодным осенним утром, не твердея при низких температурах. При этом более жесткий внутренний слой на основе наносилики дает острую реакцию на управляющие действия и надежную обратную связь.

Стоп машина

В момент торможения повышенная нагрузка приходится на все пятно контакта. Именно торможение в наибольшей степени сокращает ресурс покрышки. Здесь она одновременно получает и абразивное повреждение от контакта с асфальтом, и резкий нагрев, который понемногу разрушает структуру смеси.

Чтобы хоть отчасти уменьшить негативное влияние теплового фактора, в покрышках Bridgestone MY-02 используется технология Nano-Pro-Tech, суть которой в более продуманном и равномерном распределении углерода в материале покрышки. Она позволяет в два раза уменьшить нагрев колеса в условиях работы под нагрузкой.

Не меньше эффективность торможения зависит от надежности контакта колеса с дорогой. Чтобы этот контакт улучшить, инженеры Michelin сделали края блоков протектора скругленными. Идея в том, что острый край блока при контакте с дорогой может зацепиться за неровность на асфальте, блок деформируется и не будет обеспечивать нормального сцепления с дорожным полотном. А вот скругленные края позволяют избежать нежелательного эффекта. Эту технологию можно встретить на покрышках Michelin Primacy 3.

Далеко не последнее качество покрышки — надежность, потому как встреча на дороге с ямой или посторонним предметом может плохо закончиться не только для самой резины, но и для машины с водителем. Технология Michelin Ironflex делает покрышки более устойчивыми к механическим повреждениям. Этого удалось достичь за счет использования гибких, но очень прочных нитей каркаса и особой структуры боковины, позволяющей распределить энергию удара по всей покрышке. Впервые система Ironflex была использована в модели Michelin Energy XM2.

Водные процедуры

Главная опасность, которая подстерегает водителя в сырую и дождливую погоду, — эффект аквапланирования. На практике это выглядит следующим образом: каждое колесо гонит перед собой крохотную волну, однако с ростом скорости шина начинает понемногу «всплывать». Аквапланирование возникает не внезапно, площадь пятна контакта сокращается постепенно.

И тут многое зависит от состояния колес. Например, на абсолютно новых хороших шинах при езде со скоростью 100 км/ч по водяной пленке толщиной 2 мм пятно контакта уменьшится примерно на 20%. А вот на похожих, но предельно изношенных покрышках с глубиной протектора около миллиметра в тех же условиях оно сократится почти в десять раз.

Скорость — это, пожалуй, важнейший фактор, способствующий возникновению аквапланирования, но все-таки не единственный. Недостаточное давление в шинах тоже уменьшает пятно контакта, если под колесами водяная пленка. На первый взгляд это может показаться странным, ведь на внедорожниках, чтобы увеличить площадь соприкосновения покрышек с грунтом, их надо основательно приспустить.

Дело в том, что на шоссейных скоростях жидкость затекает под центральную часть протектора, и колесо опирается на боковины. Дефицит давления в пол-атмосферы может уменьшить пятно контакта вдвое при скорости 80 км/ч и достаточно толстой водяной пленке.

Аквапланирование — как пожар: его намного проще предотвратить, чем прекратить. Чтобы успешно справляться с большими объемами воды, современной покрышке требуется сложный, тщательно продуманный рисунок. Большую часть попадающей под колесо воды берут на себя глубокие продольные канавки, но они не всегда успевают вывести всю воду из пятна контакта.

Поэтому рисунок приходится совершенствовать. Например, в Nokian Hakka Black реализована технология Hydro-Grooves. Это продольные ребра, расположенные рядом с внутренними плечевыми зонами. Во время сильного дождя они помогают отвести воду в продольные канавки и тем самым предотвратить аквапланирование.

В плечевой зоне протектора шины Nokian Hakka Green используются так называемые вентурные канавки, расширяющиеся по ходу течения воды. Согласно эффекту Вентури, при течении потока через расширяющийся канал в жидкости создается разрежение. Оно буквально всасывает воду из-под протектора в канавки.

Комплексная система защиты от аквапланирования, примененная в шинах Cordiant Road Runner, называется Wet Cor. Основную массу воды выталкивает из пятна контакта система продольных и поперечных канавок, а оставшуюся на асфальте тонкую водяную пленку осушает система микроламелей. Благодаря микроламелям поведение автомобиля на влажной дороге (конечно, не в проливной дождь) максимально приближено к езде в сухую погоду.

Статья «Резина для нерезиновой» опубликована в журнале «Популярная механика» (№4, Апрель 2013).

Как работает автоматическая система подкачки колёс.

Хаммер и многие военные машины, уже много лет оснащаются системой подкачки колёс. Это сделано для улучшения проходимости автомобиля, по плохим дорогам или в плохих погодных условиях.В настоящее время, большинство массово производимых автомобилей оснащаются только системой мониторинга давления в шинах.Давайте рассмотрим, какие преимущества предоставляет такая система, ведь сильно спущенное колесо можно различить и без неё, а чуть спущенное не создает проблем. Первое о чём хотелось бы сказать, что давление в колесе может уменьшаться во время обычной езды, например, при попадании колеса в яму или при любом другом ударе, также на изменение давления влияет сезонное изменение температуры. Такое изменение давления в шинах не имеет визуального эффекта, но приводит к увеличению расхода топлива, быстрому износу протектора и ухудшает управляемость автомобиля. Давайте рассмотрим подробнее как это происходит.На картинку выше видно, что в зависимости от давления в шинах, изменяется площадь соприкосновения с поверхностью, а следовательно, и сила трения. При низком давлении в шинах, площадь соприкосновения увеличивается, а следовательно, увеличивается сила трения, это может быть полезным в условиях тяжелой проходимости, но при движении по асфальтной дороге приводит к повышенному расходу топлива. Также в случае если давление в какой-либо из шин автомобиля существенно занижено, это может привести к разбортировке колеса во время движения, про такие ситуации водители говорят “переобулся на ходу”.Что касается износа, уменьшение давления на 20% от номинального, сокращает ресурс шины в 3 раза.Очевидно, что если давление в шинах отличается это ухудшает управляемость автомобиля, также если давление выше номинального, то при повороте на большой скорости, из-за плохого сцепления колеса с дорогой, можно потерять управление.

Ещё одним существенным плюсом является, возможность во время движения узнать о том, что пробилось колесо. Также узнать о том, что пробито колесо можно по косвенным признакам, например, по расстоянию, которое проходит колесо за один оборот, в этом случае источником данных служат датчики ABS.

Давайте рассмотрим централизованную систему подкачки шин(CTIS).CTIS позволяет контролировать давление воздуха в каждой шине, разрабатывалась она для повышения эффективности работы на различных поверхностях. Снижение давления воздуха в шине, как мы упоминали выше, создаёт большую площадь контакта между шиной и грунтом, это позволяет наносить меньший ущерб поверхности, поэтому она нашла применение в сельскохозяйственных отраслях. Ещё одна функция CTIS — это поддержание давления в колесе в случае прокола. Существуют два основных производители CTIS: американская корпорации Dana и Французская Syegon. Dana выпускает две версии CTIS, для использования в военных целях (PSI) и для коммерческого использования (TPCS).На рисунке выше показано общее устройство CTIS.На каждом колесе расположен клапан, который позволяет изолировать колесо от системы и воздействовать на него, только в случае необходимости.

Читайте также:  Как определить когда пора менять шины

Электронный блок управления (ECU), установленные позади пассажирского сиденья, отправляет команды Пневматическому блоку управления, который контролирует клапана и давление в системе, а также передает показания давления в шинах ECU .

С помощью панели управления водитель регулирует давление в шинах, а также следит за состоянием системы.

Если транспортное движется по шоссе, для того чтобы избежать повреждений, давление в шинах должно быть выше, поэтому CTIS включает в себя датчики скорости. Система автоматически надувает и спускает колеса в зависимости от скорости движения.

Воздух для работы CTIS получает от того же компрессора, что и тормозная система, реле давления гарантирует, что воздух не будет поступать в CTIS пока не заполнится тормозная система.

Несколько лет назад компания Goodyear разработала технологию самоподкачивающихся шин Air Maintenance System, не требующая установки дополнительной электроники и внешнего насоса. Миниатюрный насос и все остальные детали системы находятся непосредственно в самой шине. А в основе работы лежит принцип работы сообщающихся сосудов.

СИСТЕМА АВТОПОДКАЧКИ КОЛЕС

Строй-Техника.ру

Строительные машины и оборудование, справочник

Система централизованного регулирования давления воздуха в шинах

Оборудование, кузов и органы управления

Система централизованного регулирования давления воздуха в шинах

На автомобилях высокой проходимости (ЗИЛ-131, ЗИЛ-157, Урал-375, ГАЗ-66) получила применение система централизованного регулирования давления воздуха в шинах, с помощью которой давление воздуха в шинах может изменяться на ходу автомобиля в зависимости от дорожных условий. Это значительно улучшает проходимость автомобиля, а также позволяет продолжать движение автомобиля до базы без смены колеса в случае незначительного повреждения камеры.

Питание шин сжатым воздухом производится из баллонов пневматического привода тормозов или из баллона специальной пневматической системы (ГАЗ-66) с помощью специальных аппаратов, включенных в общую схему пневматического оборудования автомобиля.

На автомобиле ЗИЛ-131 система централизованного регулирования давления воздуха в шинах включена в общую систему пневматического оборудования автомобиля и питается из ее воздушных баллонов.

В систему регулирования входят: комбинированный кран управления давлением с клапаном-ограничителем, воздухопроводы с гибкими шлангами, шинный манометр, уплотнительные муфты подвода воздуха к каналам ведущих полуосей задних мостов и приводных валов переднего моста и шинные краны со шлангами, соединенными с вентилями камер пневматических шин.

Кран управления давлением воздуха в шинах имеет корпус, в котором в направляющей пробке и в двух сальниках установлен передвижной золотник с выточкой на средней части. Золотник может перемещаться через тягу рукояткой, расположенной на панели приборов и устанавливаемой в трех фиксируемых положениях в прорезях кронштейна. Крайние положения золотника ограничиваются стопорным кольцом.

Левая камера корпуса через ограничительный клапан сообщена воздухопроводом с воздушными баллонами; правая камера сообщается через трубку с атмосферой, а средняя камера воздухопроводами соединена с шинами колес.

При среднем положении рукоятки крана золотник расположен в среднем нейтральном положении (как показано на чертеже),

средняя камера корпуса разобщена от крайних камер, и система регулирования давления воздуха в шинах выключена.

При установке рукоятки в правое положение («Накачка») золотник сдвигается налево (рис. 454, б), выточка золотника, располагаясь против левого сальника, сообщает левую полость корпуса со средней, и в шины поступает сжатый воздух, происходит подкачка шин. При установке рукоятки в левое положение («Выпуск воздуха») золотник сдвигается вправо (рис. 454, в), располагаясь проточкой против правого сальника; при этом шины соединяются с атмосферой и давление воздуха в них понижается. Необходимая величина давления воздуха в шинах контролируется по манометру.

Рис. 1. Кран управления системой централизованного регулирования давления воздуха в шинах автомобиля ЗИЛ-131

На корпусе крана крышкой (рис. 1,а) закреплена диафрагма, нагруженная пружиной, предварительную затяжку которой можно регулировать завернутым в крышку болтом с контргайкой. Данное устройство, представляющее собой клапан-ограничитель, прекращает доступ воздуха из баллонов к крану и шинам в том случае, если давление воздуха в баллонах падает ниже допустимой величины, необходимой для нормальной работы тормозной системы (5,5 кГ/с.ц9).

На автомобиле ЗИЛ-157К система централизованного регулирования давления питается из общей системы пневматического привода тормозов и состоит из центрального крана управления с рукояткой, клапана ограничения падения давления, блока шинных кранов, каналов, головок подвода воздуха к шинам и трубопроводов с гибкими шлангами и запорными вентилями колес. Для контроля давления в шинах имеется манометр.

Клапан ограничения падения давления воздуха установлен на магистрали, подводящей воздух от баллонов тормозной системы к центральному крану управления. Клапан служит для отключения подвода воздуха к шинам в случае падения давления в тормозной системе ниже 4,5 кГ/см2.

Как работает автоматическая система подкачки колёс.

Клапан состоит из корпуса с крышкой, между которыми закреплена диафрагма с клапаном и направляющим стаканом. Клапан постоянно прижимается к своему гнезду пружиной. Давление пружины можно регулировать винтом. К боковому штуцеру присоединен воздухопровод от центрального крана. К верхнему штуцеру присоединена трубка, идущая к шинам. При нормальном давлении в тормозной системе выше 4,5 кГ/см2 диафрагма с клапаном опущена вниз, и подвод воздуха к шинам включен. При падении давления клапан закрывается, предотвращая дополнительный расход воздуха из тормозной системы.

В центральном кране управления имеются три клапана: впускной, выпускной и обратный.

Все клапаны установлены в литом корпусе (рис. 2, б) и прижимаются к гнездам пружинами.

Впускной клапан служит для подачи сжатого воздуха к шинам и повышения в них давления, а выпускной клапан — для выпуска воздуха из шин в атмосферу при необходимости понижения в них давления. Включение этих клапанов производится поворотом рычага, установленного в корпусе на оси. На конце рычага, действующего на шток впускного клапана, завернут регулировочный винт. Обратный клапан автоматически предотвращает при открытии впускного клапана выпуск воздуха из шин в тормозную систему, когда давление в ней ниже, чем в шинах.

К отверстиям корпуса крана с помощью штуцеров присоединяются воздухопроводы: к отверстию от воздушного баллона, к отверстию от манометра, к отверстию от блока шинных кранов. Отверстие служит для выхода воздуха в атмосферу. Рычаг крана при помощи тяги соединен с рычагом управления, расположенным на щитке в кабине водителя. Этот рычаг может быть установлен в трех положениях.

При среднем положении рычага все клапаны закрыты, и давление воздуха в шинах не изменяется. При переводе рычага направо в положение «Накачка» открывается впускной клапан, и воздух через отверстие, впускной клапан и открывающийся давлением воздуха обратный клапан через отверстие и воздухопровод проходит к блоку шинных кранов. Если впускной клапан открыт при меньшем давлении воздуха в подводящей магистрали, чем давление в шинах, воздух из шин выйти не может, так как обратный клапан автоматически закроется. При переводе рычага налево, в положение «Спуск», открывается выпускной клапан и воздух через отверстие, по каналу, через выпускной клапан и отверстие выходит в атмосферу, и давление в шинах понижается.

Блок шинных кранов, имеющий шесть вентилей и расположенный в кабине водителя, дает возможность индивидуально отключать от подачи воздуха любую из шин. Располоячение вентилей в ряду соответствует расположению колес автомобиля.

От блока шинных кранов воздух по трубкам и гибким шлангам подводится к цапфам колес и через головки подвода воздуха и трубки, снабженные запорными вентилями, поступает в шины.

Давление воздуха в шинах контролируется по манометру. Кроме того, на трубопроводе, идущем от центрального крана к блоку шинных кранов, установлены два электрических датчика 25. Эти датчики включают сигнальную лампу, расположенную на щитке кабины, при падении давления

Рис. 2. Оборудование системы централизованного регулирования давления воздуха в шинах автомобиля ЗИЛ-157К: а — клапан ограничения падения аавления; б — центральный кран управления; в — блок шинных кранов

воздуха в шинах ниже 0,5 кГ/см2 или превышения давления выше допустимого 3,5 кГ/см2. На последних выпусках автомобилей датчики с сигнальной лампой не ставятся.

Давление в шинах с помощью централизованной системы следует регулировать в зависимости от дорожных условий: на дорогах с твердым покрытием и укатанных грунтовых дорогах оно должно находиться в пределах 3,0—3,5 кГ/см,2; по рыхлому грунту (сухая пашня) 1,5—2,0 кГ/см2 при скорости не более 20 км/ч; по сыпучему песку и грунтовой дороге в распутицу 0,75 —1,0 кГ/см2; по глубокому снегу, сырой луговине — 0,75—0,5 кГ/см2. Снижать давление ниже 0,5 кГ/см2 не разрешается; для этого необходимо при работе на пониженном давлении в шинах внимательно следить за манометром и сигнальной лампой.

Подкачка шин до давления 1,5 кПсм2 после работы на пониженном давлении должна производиться на остановленном автомобиле.

На автомобиле Урал-375 централизованная система регулирования давления воздуха в шинах питается от общей с тормозами пневматической системы и дополнительно включает: кран управления, междубаллонный редуктор, шинный манометр, блок шинных кранов, воздухопроводы, каналы с уплотнительными муфтами в приводе колес и колесные краны. Кран управления состоит из корпуса, в котором установлен золотник с выточкой на средней части. Золотник уплотнен двумя сальниками, разделяющими корпус на три камеры.

Одна крайняя камера трубкой сообщена с воздушным баллоном; средняя камера сообщена трубкой с блоком шинных кранов и другая крайняя камера трубкой сообщена с атмосферой. Золотник тягой соединен с рукояткой управления, установленной на кронштейне. При помощи рукоятки золотник крана может быть поставлен в три положения. При установке рукоятки в среднее положение шины отключены от подачи воздуха и от атмосферы. При левом положении рукоятки шины сообщаются с подачей воздуха, а при правом — с атмосферой для понижения давления.

На автомобиле ГАЗ-66А система централизованного регулирования давления воздуха в шинах выполнена с самостоятельным питанием ее сжатым воздухом. В систему входят: воздушный компрессор с регулятором давления и разгрузочным устройством; воздушный баллон с предохранительным клапаном, краном отбора воздуха и сливным краном; кран управления с рукояткой; манометр; воздухопроводы; каналы с уплотнительными муфтами в приводе колес и колесные краны.

Воздушный компрессор поршневого типа, одноцилиндровый, с воздушным охлаждением, укреплен на двигателе с помощью кронштейна. Компрессор приводится в действие ременной передачей. Шкив, установленный на конце коленчатого вала компрессора на шарикоподшипниках, может соединяться с валом для включения компрессора с помощью шлицевой муфты, управляемой вилкой с рычагом.

Воздух поступает в цилиндр компрессора из воздухоочистителя двигателя через впускной пластинчатый клапан в головке. Из цилиндра воздух поступает через нагнетательный пластинчатый клапан по воздухопроводу в воздушный баллон.

Регулятор давления шарикового типа имеет устройство и принцип действия, аналогичные устройству и принципу действия регулятора системы пневматического привода тормозов автомобиля ЗИЛ-130.

Разгрузочное устройство состоит из корпуса, в цилиндре которого установлен поршень с уплотнением и штоком с пружиной. Сверху в корпус завернута пробка со штуцером, к которому присоединяется трубка от регулятора давления. Нижняя полость корпуса через отверстие соединена с атмосферой. Корпус разгрузочного устройства завернут в головку компрессора и его шток располагается над впускным клапаном.

При достижении давления воздуха в баллоне до 5,0—5,5 кГ/см2 регулятор давления соединяет баллон с полостью, расположенной над поршнем разгрузочного устройства, отключая ее от атмосферы; поршень, опускаясь вниз, надавливает штоком на впускной клапан компрессора, открывая его. При этом сжатие воздуха компрессором прекращается, и он выключается из работы. При падении давления в баллоне до 4,0—4,5 кГ/см2 регулятор отключает разгрузочное устройство от баллона, сообщая верхнюю полость корпуса с атмосферой. Шток с поршнем поднимаются вверх под действием пружины, и компрессор включается снова в работу.

Рис. 3. Оборудование системы централизованного регулирования давления Еоздуха в шинах автомобиля Урал-375: а — схема пневматической системы; б — кран управления; в — ограничитель падения давления; г — блок шинных кранов

Регулировка необходимого давления включения и выключения компрессора осуществляется подвертыванием колпака пружины регулятора давления и регулировочными прокладками под седлом его клапана. В компрессоре, установленном на автомобилях, не оборудованных системой централизованного регулирования воздуха в шинах, на место корпуса разгрузочного устройства в головку завертывается пробка.

Кран управления применен золотникового типа и имеет устройство и принцип действия, аналогичные устройству и принципу действия крана автомобиля Урал-375. Система подвода воздуха в приводе колес была рассмотрена выше. На автомобилях ГАЗ-66А, не оборудованных централизованной системой регулирования давления воздуха в шинах, компрессор используется для накачивания шин.

При пользовании системой централизованного регулирования во время движения автомобиля колесные краны должны быть открыты. При этом давление в шинах контролируется шинным манометром. При длительных стоянках автомобиля колесные краны во избежание утечки из шин воздуха надо закрывать.

Уход за системой заключается в основном в проверке герметичности всех ее соединений и частей. Проверка проводится на шинах, охлажденных до температуры окружающей среды. Необходимо также после окончания работы спускать конденсат из воздушного баллона.

Читать далее: Приводная лебедка

Категория: — Оборудование, кузов и органы управления

Главная → Справочник → Статьи → Форум

Как работает автоподкачка шин при движение?

Лунохода.Нет

Система регулирования давления воздуха в шинах автомобиля Урал

Система регулирования давления воздуха в шинах позволяет контролировать давление и поддерживать его в пределах нормы, а также повышать проходимость автомобиля за счет снижения давления воздуха в шинах.

Она дает возможность продолжения движения автомобиля при проколе камеры без замены колеса (колесные краны неповрежденных колес должны быть закрыты) если подаваемого воздуха достаточно для постоянного поддержания в шинах необходимого давления.

Подвод воздуха к шинам по однопроводной схеме. Шины всех колес с открытыми кранами соединены между собой, давление в них одинаково и регулируется одновременно.

Кран управления давлением золотникового типа, состоит из корпуса 7, в котором установлены манжеты 10 и золотник 12.

При перемещении золотника вдоль оси имеющаяся на нем кольцевая проточка соединяет полость крана с атмосферой или нагнетающей магистралью.

Клапан—ограничитель, служащий для отключения системы накачки шин при падении давления воздуха в пневмосистеме автомобиля ниже 600 кПа (6 кгс/см2), регулируйте болтом 14.

Блок манжет 22 подвода воздуха состоит из четырех манжет, установленных в цапфе (кожухе) моста.

Манжеты обеспечивают герметичность соединения каналов неподвижной цапфы (кожуха) и каналов вращающейся полуоси.

Пользование системой и ее техническое обслуживание

После открытия колесных кранов систему регулирования давления воздуха в шинах продуйте воздухом из шин.

Для этого установите ручку крана управления в положение «ВЫПУСК», снизьте давление в шинах на 0,0З—0,05 МПа (03—0,5 кгс/см2), после чего доведите давление в шинах до давления, соответствующего покрытию дороги.

Продувку системы регулирования давления воздуха проводите также перед установкой автомобиля на стоянку и после каждого выезда из теплого гаража.

Давление воздуха в шинах определяйте по манометру при нейтральном положении рычага крана управления давлением и открытых колесных кранах.

Для обеспечения раздельного регулирования давления воздуха в шинах, какого — либо моста, закройте колесные краны на других мостах.

Если наблюдается падение давления, то закройте колесные краны и, открывая их поочередно, определите, в какой шине происходит утечка воздуха.

Давление в шинах в зависимости от дорожного покрытия

Источник

Adblock
detector