Меню

Шина станции что это

Цифровая подстанция: Применение. Шины процесса

КРАТКОЕ СОДЕРЖАНИЕ

Оцифровка величин тока и напряжения, поступающих от измерительных трансформаторов с технологией NCIT (нетрадиционные измерительные трансформаторы) или от обычных измерительных трансформаторов, преобразованных в цифровую форму так называемыми автономными объединяющими устройствами (SAMU), и простота доступа к этим данным, через цифровой стандартизированный интерфейс, со стороны любых электронных устройств, таких, как средства защиты, компьютерные системы, представляют собой главные преимущества этой технологии. Предполагается внедрение новых функциональных возможностей, например: интеллектуальный мониторинг, функции защиты на базе программных модулей, реализованных в рамках стандартных платформ аппаратных средств, и новые распределенные функции на компьютерах присоединения. Кроме того, интеллектуальный контроль всей системы NCIT предотвращает возможность возникновения существенных отказов мерами предупредительного техобслуживания, исключает несвоевременные ремонтные отключения и обеспечивает надежное функционирование подстанций посредством использования интеллектуального резервирования, например, такого, как протокол параллельного резервирования PRP (Parallel Redundancy Protocol).

Совместимость обычных измерительных трансформаторов и всех трансформаторов с технологиями NCIT, а также оборудования различных поставщиков может быть достигнута в результате использования стандартного протокола: «Шина процесса» (Process bus), т.е. МЭК 61850-9-2 со специальной рекомендацией МЭК 61850-9-2LE.

Международный стандарт МЭК 61850 для систем передачи данных открывает новую эру в области совершенствования подстанций. Он охватывает не только проектирование систем релейной защиты, контроля и управления подстанций, но и разработку вторичных цепей подстанций. Высокоскоростная связь между равноправными устройствами с использованием GOOSE-сообщений и дискретизированных аналоговых значений (Sampled Analogue Values) позволяет усовершенствовать распределенные приложения, базирующиеся на передаче значений тока и напряжения между устройствами, подключенными к сети технологического процесса и к локальной сети подстанции.

За несколько прошедших лет тенденции развития рынка в направлении реализации требований МЭК 61850 стали одинаково очевидными как для поставщиков, так и для заказчиков. Значительная доля этого интереса сконцентрирована на процессе миграции от решений реализации шин подстанций, продиктованных интересами изготовителей, в направлении систем автоматизации подстанций, которые характеризуются полной интеграцией интеллектуальных устройств IED, таких, как терминалы релейной защиты, в соответствии с требованиями принятого международного стандарта.

Этот подход был сосредоточен главным образом на «Шине подстанции» стандарта МЭК 61850-8-1 и реализовывался путем моделирования и развития по аналогии с традиционными подходами систем SCADA.

«Шина процесса» (Process bus), определенная стандартом МЭК 61850- 9-2, остается в существенной степени неисследованной до настоящего времени.

МЭК 61850-9-2 представляет собой часть стандарта, который внедряет в практику технологию нетрадиционных измерительных трансформаторов (NCIT), устраняя несовершенства и ограничения традиционных ТТ и ТН с их обмотками на стальных сердечниках.


«ШИНА ПРОЦЕССА» (PROCESS BUS)

«Шина процесса», определенная стандартом МЭК 61850-9-2, позволяет использовать цифровую связь между электронными трансформаторами тока/напряжения или объединяющими устройствами и устройствами присоединения, такими, как реле защиты, контроллерами или счетчиками присоединения. Это канал связи 4 на рисунке 1, заимствованном из стандарта МЭК 61850.

Фактически все технологии DIT используют электронные терминалы, поэтому они не позволяют применять традиционные аналоговые выходы измерительных трансформаторов по причине повышенной потребности в электропитании для усилителей.

В 1998 году возникла идея передачи «мгновенных значений измерений» (Sampled Values) по цифровым сетям передачи данных. Описание первой рекомендации было дано в стандарте МЭК 60044-8.

Компаниями Alstom и RTE был проведен успешный эксперимент по использованию оптического трансформатора тока на подстанции «Вилмулин» 400 кВ.

В 2002 году несколькими основными производителями был запущен проект «Совместимость» и произведен выбор протокола. Им стал протокол «Шина процесса» (Process bus). В документе под названием LE (Light Edition, облегченная редакция), входящем в состав Руководства, зафиксирован основной параметр протокола. Первая успешная демонстрация проведена на CIGRE в 2004 году.

В 2008 году рабочая группа TC38 начала разработку редакции нового стандарта МЭК 61869-9-2 для электронных измерительных трансформаторов. Предложенный цифровой интерфейс основывается на рекомендациях МЭК 61850-9-2 LE с дополнительными характеристиками. Этот документ будет издан в 2011 г.

Предложенная архитектура
Сохранение существующей архитектуры подстанции с резервированием сети Ethernet (PRP или HSR):
• защита (80 выборок/цикл) — основной канал 1;
• защита (80 выборок/цикл) — основной канал 2 (резерв);
• регистрация возмущений (256 выборок/цикл — полоса пропускания 10 кГц);
• учет (80 выборок/цикл) — коммерческий учет или учет тарифов;
• оценка качества электроэнергии (256 выборок/ цикл – анализ гармоник — 100 e).

Объединяющие устройства для мгновенных значений измерений:
• N-MU или P-MU для DIT (объединяющее устройство для подключения к первичным преобразователям, разделенным или в виде единого устройства, предназначенное для работы с датчиками различных типов);
• A-MU для CIT (объединяющее устройство для подключения к обычным измерительным трансформаторам с аналоговыми входами).

Объединяющее устройство для контроллеров выключателей:
• совместимость;
• CB-MU для выключателей и разъединителей (ввод/вывод, подача команды на отключение через GOOSE-сообщения);
• CB-MUM для выключателей (контроль и подача команды на отключение выключателя; резервирование).

Две независимые сети: 9–2 для передачи мгновенных значений измерений и 8–1 для GOOSE:
• «Шина процесса» (сеть Ethernet, в настоящее время 100 BaseFx) со стандартом МЭК 61850-9.2 LE для мгновенных значений измерений SV, которая в скором времени станет глобальным стандартным интерфейсом МЭК 61869-9-2, для измерений тока и напряжения;
• «Шина процесса» (сеть Ethernet, в настоящее время 100 BaseFx) со стандартом МЭК 61850-8.1 служба GOOSE-сообщений для положения выключателя-разъединителя (SW), положения и отключений автоматического выключателя.


ПРЕИМУЩЕСТВА ИНТЕГРАЦИИ «ШИНЫ ПРОЦЕССА»

Читайте также:  Контроллер шины pci процессора

Оцифровка величин тока и напряжения
Мгновенные значения, полученные от нетрадиционных или традиционных измерительных трансформаторов, оцифрованные так называемыми автономными объединяющими устройствами (SAMU), обеспечивают связь в реальном масштабе времени, что, в свою очередь, позволяет осуществить простой доступ к этим данным со всех прочих устройств подстанции (средств релейной защиты, компьютерных систем, и др.) путем реализации технологии Ethernet. Это является одним из главных преимуществ!

Совместимость
Достигается совместимость технологий традиционных и нетрадиционных измерительных трансформаторов, а также согласованность оборудования всех поставщиков со стандартным протоколом. Это обеспечивает значительно большую гибкость при проведении реконструкций подстанций генерирующих предприятий. Этот пункт абсолютно обязателен и противопоставляется «частным» решениям.

Простота эксплуатации

• оптическая технология Ethernet 100 BaseFX позволяет радикально упростить кабельную систему;
• оптический кабель имеет естественную изоляцию ЭМИ, что способствует снижению затрат на проектирование, инжиниринг и повышает общую надежность системы;
• используемые технологиями DIT электронные компоненты обеспечивают повышение степени промышленной стандартизации путем уменьшения разнообразия моделей ТТ/ТН по причине осуществимости повторной калибровки с помощью электронных установок.

Ввод в эксплуатацию, испытания на объекте, простота конфигурирования архитектуры позволяют добиться снижения численности персонала.

Ожидаемые новые функциональные возможности
Ниже приводится неполный перечень функциональных возможностей:
• интеграция всех функций защиты, управления, измерений и контроля в пределах подстанции на основе программных модулей, легко переносимых на любые стандартные аппаратные платформы;
• обеспечение средств для высокоскоростных приложений подстанции (новые функции защиты, блокировки, телеотключения);
• обеспечение новых распределенных функций для контроллеров присоединения или упрощенных устройств защиты (например, контроль синхронизма, регистрация переходных процессов, анализ гармоник и т.д.);
• возможность упрощенной повторной калибровки ТТ/ТН при работе с различными номиналами точек измерений.

Повышение степени готовности-надежности
• постоянный интеллектуальный контроль в оперативном режиме параметров трансформаторов тока, напряжения и автоматических выключателей, повышающий надежность эксплуатации;
• предотвращение серьезных аварий путем предупредительного техобслуживания;
• исключение несвоевременных ремонтных отключений.

Все это вносит вклад в обеспечение безопасности подстанций в результате применения интеллектуального резервирования, например, протокола параллельного резервирования PRP (Parallel Redundancy Protocol) (дублированная сеть передачи данных) или качественно интегрированного резервирования высокой степени готовности HSR (High-availability Seamless Redundancy).

Все эти преимущества обеспечивают ценный вклад в повышение надежности и готовности современных высоковольтных сетей и являются одной из важнейших задач концепции Smart Grid.

Нашли ошибку? Выделите и нажмите Ctrl + Enter

Источник

Основные виды и типы электротехнических шин

В данной статье будут рассмотрены основные виды и типы электротехнических шин и регламентирующих их производство документов.

Электротехническая шина — это проводник с низким сопротивлением (активным и реактивным), к которому могут подсоединяться отдельные электрические цепи (в низковольтных установках и сетях) или высоковольтные устройства (электрические подстанции, высоковольтные РУ и т.д.). Использование шин обеспечивает экономию площади установки, материало- и трудозатрат.

В качестве основного материала для изготовления электротехнических шин как правило используют алюминий и медь.

Производство шин регламентируется рядом ГОСТов и технических условий:

ГОСТ 15176-89 Шины прессованные электротехнического назначения из алюминия и алюминиевых сплавов. Технические условия. В ГОСТе регламентируются параметры, в соответствии с которыми должны изготовляться алюминиевые шины — толщина, ширина, длина, площадь поперечного сечения, диаметр окружности и соответствующая им масса на 1 метр для готовых шин. Указываются допустимые предельные отклонения от указанных величин, марки алюминия, требования к качеству, внешнему виду, механическим и электрическим параметрам. Приводятся правила маркировки, упаковки и приема шин данного типа.

ГОСТ 434-78 Проволока прямоугольного сечения и шины медные для электрических целей. Технические условия. В стандарте указаны номинальные размеры и расчетные сечения медных шин, марки меди, удельное электрическое сопротивление и предельные отклонения размеров. Приводятся допустимые длины шин и массы бухт, а также возможные отклонения от данных величин. Предъявляются требования к материалу изготовления шин, внешнему виду готовых изделий (допустимые дефекты, цвета). Изложены правила упаковки, транспортировки и хранения, приемки и испытаний.

ГОСТ 10434-82 Соединения контактные электрические. Классификация. Общие технические требования. Приведена классификация контактных соединений по таким параметрам как: область применения, климатическое исполнение и категории размещения электротехнических устройств, конструктивное исполнение. Указаны требования к конструкции, электрическим и механическим параметрам, надежности и безопасности в зависимости от классификации. Даны ссылки на ряд сопутствующих ГОСТов.

ГОСТ 8617-81 Профили прессованные из алюминия и алюминиевых сплавов. Технические условия. Приведена классификация профилей данного типа (по типу, по состоянию материала и типу прочности). Даны ссылки на ГОСТы с номинальными размерами, указаны величины предельных отклонений. Описаны технические требования к маркам алюминиевых сплавов для изготовления профилей, к механическим свойствам, допустимым дефектам, качеству поверхности и внешнему виду готовых изделий. Описаны условия транспортировки и хранения, правила приемки, методы испытаний.

ТУ 1-5-009-80 Шины электротехнические из алюминиевых сплавов.

ТУ 16.705.002-77. Шины алюминиевые прямоугольные. Описаны технические условия для изготовления алюминиевых шин прямоугольным сечением. Указаны номинальные и допустимые размеры, марки сплавов, электрические характеристики.

Согласно классификации, существует несколько типов шин.

Сборная шина — это шина, к которой могут подключаться распределительные шины и блоки ввода/вывода.

Силовая шина (шина электропитания) — шина, которая служит для передачи энергии внутри силовых блоков и между элементами мощных преобразовательных устройств и характеризуется высокими значениями токов и напряжений. Силовая шина может являть собой твердую неизолированную шину, твердую шину в изоляции или конструкцию из набора чередующихся проводящих и изолирующих слоёв. Твердая неизолированная медная шина поставляется производителями с изолирующими шинодержателями различных типов и изолирующими экранами, исключающими непосредственный доступ к клеммам силовых шин. Данные шины характеризуют большая допустимая плотность тока и высокое напряжение изоляции. В качестве материала шин зачастую используется медь и медные сплавы, а также алюминий. По способу крепления силовые шины могут быть вертикальные, горизонтальные, изолированные, задние/ступенчатые и универсальные (мультистандартные).

Читайте также:  Genesis давление в шинах сбросить

Шина заземления — главная деталь заземляющей системы электроустановок и электросетей. Её также называют главная заземляющая шина ГЗШ. С шиной заземления соединяется рабочий ноль, защитные нулевые проводники и провода внешних заземлений. Обычно ГЗШ являет собой медную пластину с перфорированными отверстиями. Хотя иногда встречаются и стальные ГЗШ.

Перфорированная медная шина заземления

Перед подключением к ГЗШ, провода заземления должны быть опрессованы наконечником для кабелей или соединительной гильзой, а затем уже подключены на болт с гайкой (например М5). Шина также комплектуется опорными изоляторами с крепежом.

Шина заземления на опорных изоляторах с проводами заземления

Шины для крепления на DIN-рейке — шины, применяемые для крепления на монтажных рейках в электрических щитах или шкафах управления. Данный тип шин зачастую производят из латуни или луженой меди, а диэлектрическое основание, которым осуществляется крепление к монтажным рейкам, из полиамида. Шинами на din-рейку являются нулевые шины, коммутирующие в щитах нулевые провода и провода заземления, или же распределительные шины. Встречаются также шины на din-рейку в корпусе. Такие шины называются распределительными шинами в блоке или распределительными блоками.

Шина нулевая в изоляторе на DIN-рейку

Распределительная шина в блоке

Распределительная шина — это шина, подключенная к сборной шине и питающая устройство вывода. Данная шина входит в состав одной секции НКУ (низковольтного устройства распределения и управления). Одним из видов распределительных шин являются соединительные или гребенчатые шины. Они предназначены для параллельного включения модульных автоматов, УЗО, дифференциальных автоматов, контакторов и т.д. Гребенчатые шины исполняются из медной пластины прямоугольного сечения и помещаются в пластиковый корпус.

Частным случаем распределительных шин являются ступенчатые распределительные блоки. Блоки состоят из ступенчатых изоляционных опор, с помощью которых осуществляется крепление, и как правило 4-х медных шин. На шинках находятся отверстия: резьбовые (М6) для отходящих цепей и без резьбы для питания распределительного блока. Блок может устанавливаться как горизонтально (в зоне коммутационного оборудования), так и вертикально (в кабельном канале шкафа). К лицевой части блока крепится изолирующий экран.

Ступенчатый распределительный блок


Схема горизонтальной и вертикальной установки распределительного блока

Номинальные значения параметров шин указаны в приведенных в начале статьи ГОСТах. Поэтому далее в статье будут приведены лишь ключевые характеристики различных типов шин.

Выпуск алюминиевых шин марки ШАТ регламентирует ТУ 16-705 002-77. Данные шины изготавливают прямоугольным сечением. Диапазон изменения ширина шины ШАТ — от 10 до 120 мм, толщины — от 3 до 12 мм, поперечного сечения — от 30 до 1440 мм 2 . Величина удельного сопротивления не больше 0,0282 мкОм*м. Шины марок АД0 и АД31 (ГОСТ 11069-79 и ГОСТ 15176-89) изготавливаются прямоугольным сечением площадью от 30 до 25800 мм 2 . Диапазон изменения толщины данных шин — от 3 мм до 110 мм, ширины — от 6 мм до 500 мм. Значение удельного сопротивления постоянному току: шины АД0 — до 0.029 мкОм*м; шины АД31 — от 0,0325 до 0,0350 мкОм*м (зависит от типа). Диапазон длительно допустимых токов (определяется сечением шины) — от 165 А до 2300 А. Для производства шин используется алюминий А5, А5Е, А6, А7, АД00, АД0 и алюминиевые сплавы АД31 и АД31Е. Для изменения свойств материала используются следующие технологии: закаливание и естественное состаривание, закаливание и искусственное состаривание, не полное закаливание и искусственное состаривание, а также горячее прессование (без термической обработки). Длина алюминиевых шин зависит от площади поперечного сечения и должна быть равной или кратной: от 3 до 6 м для шин сечением до 0.8 см 2 ; от 3 до 8 м — для шин сечением от 0.8 до 1.5 см 2 ; от 3 до 10 м — для шин сечением более 1.5 см 2 . Колебания в длине — не более 20мм. Алюминиевые шины отличаются малым весом и невысокой стоимостью.

Медные шины согласно ГОСТ 434-78 выпускаются таких марок: ШММ — шина медная мягкая, ШМТ — шина медная твердая, ШМТВ — шина медная твердая из бескислородной меди. Минимальная и максимальная ширина медных шин — 16 мм и 120 мм, толщина — 4 мм и 30 мм, поперечное сечение — 159 мм 2 и 1498 мм 2 . Значение удельного электрического сопротивления — не больше 0,01724 мкОм*м. Диапазон длительно допустимых токов — от 210 до 2950 А (шина 120×10) и выше при большей толщине, для гибкой медной шины — от 280 до 2330 А. Масса шин в бухте должна быть в пределах от 35 кг до 150 кг. Длина шин согласно ГОСТ — от 2 до 6 м. Твердые медные шины в сравнении с мягкими обладают меньшей проводимостью и применяются там, где требуется прочный и неподвижный шинопровод. Для изготовления мягких шин используется медь марок М1, М1М, М2. Гибкие шины более распространены, они обладают большей прочностью, долговечностью и лучшими характеристиками. Для изготовления шин из бескислородной меди используют особые медные сплавы, не имеющие в своем составе оксидов. Медные шины отличают такие преимущества в сравнении с алюминиевыми: высокая удельная проводимость (в 1,6 выше чем у алюминиевых шин), механическая прочность, теплопроводность и гибкость, коррозийная стойкость, стыковые контакты с другими шинами не окисляются. По причине высокой окисляемости на открытом воздухе и хрупкости, применение алюминиевых шин имеет ряд ограничений. Они не используются в машинах и механизмах с подвижными частями или вибрирующим корпусом. Поэтому в случаях, когда к токоведущим частям предъявляются повышенные требования, применяются медные шины.

Читайте также:  Нулевая шина бьет током

Шины являют собой токоведущие части электрических установок, соединяя между собой оборудование различного типа: генераторы, трансформаторы, синхронные компенсаторы, выключатели, разъединители, контакторы и т.д. Током нагрузки определяется сечение шин, также учитывается устойчивость к току к.з.

Шинный мост из жестких неизолированных шин применяется: на выводах генераторов, на входах главных распределительных устройств, в соединениях трансформатора с РУ и КРУ на 6 — 10 кВ, ГРУ и трансформатора связи.

Шинный мост от силового трансформатора

Соединения из жестких неизолированных шин прямоугольным или коробчатым сечением выполняются в закрытых РУ 6 — 10 кВ (в том числе сборные шины), в качестве соединений между ГРУ и трансформатором собственных нужд, между шкафами распределительных щитов. Шины коробчатого сечения рекомендуют использовать при больших токах, они обеспечивают меньшие потери и лучшее охлаждение. Крепление жестких шин осуществляется с помощью опорных изоляторов. Гибкие шины применяются в РУ на 35 кВ и выше, в соединениях блочных трансформаторов с ОРУ.

Во всех типах соединений в низковольтных установках и сетях промышленного назначения для передачи, распределения электроэнергии и подключения управляющих устройств используются медные изолированные шины (как жесткие, так и гибкие). Конструктивно данные шины являют собой одну или несколько медных тонких пластин иногда луженых с концов, покрытых изолирующей оболочкой как правило из ПВХ или другого диэлектрика с высоким сопротивлением. Данные шины являются альтернативой как кабелям, так и жесткой ошиновке и могут служить соединением между: главной силовой машиной и распределительным оборудованием (контакторами, прерывателями цепи, переключателями и т.д.), выводом трансформатора и шинопроводом, шинопроводом и электрическим шкафом.

Коммутация гибкой изолированной шиной отходящих автоматов

Применение изолированных шин позволяет экономить место, так как шины можно располагать гораздо ближе друг к другу, чем в случае неизолированной ошиновки. Преимущества изолированных шин — устойчивость к коррозии и простота монтажа. Крепежные отверстия контактных площадок делаются пробивкой непосредственно в материале контакта, что лишает потребности в кабельных наконечниках и устраняет проблемы плохого присоединения контактов. Большим спросом пользуются именно гибкие изолированные медные шины. Их главное преимущество в сравнении с жесткими — более легкий монтаж, так как нет необходимости в специнструментах и резке шины, если нужен поворот в плоскости. Гибкая шина легко меняет форму в зависимости от потребностей монтажа. Однако ряд производителей выпускают твердые изолированные шины, в том числе и по запросу. Крепление изолированных шин осуществляется с использованием болта и контактных шайб. Затягивать необходимо ключом, имеющим ограничения по моменту затяжки. Крепеж не должен быть в смазке.

Крепление медной изолированной шины

Еще одной разновидностью гибких шин являются медные плетённые шины. Такая шина сплетена из медных полос и является очень гибкой. Она используется в местах, подверженных сверхсильной вибрации, таких например, как трансформаторные шинные мосты. Данные шины также применяются для подключения различного оборудования к шинопроводам и линиям шин. Контактные площадки плетённых шин бывают как со сверлением, так и без. Выпускаются также плетённые шины, изготовленные особым методом — диффузионной сварки под давлением. Тонкослойные материалы свариваются путем пропускания через них постоянного тока под давлением. Такие шины также называют пластинчатые шинные компенсаторы или гибкие пластинчатые шины. Они имеют большую токопроводимость и меньшее тепловыделение.

Их применяют там, где необходимы компенсация теплового расширения, вибро- или сейсмоустойчивость, а также где происходит регулярный изгиб в одной оси. Например это могут быть: гибкие токопроводы для сварочных аппаратов, автоматических выключателей, шины питания для индукционных печей и печей сопротивления и т.д.

Жесткая медная шина более всего подходит для замены кабеля, используется в распределительных устройствах, а также для изготовления шинных сборок и шинопроводов. Производителями выпускаются как перфорированные так и гладкие шины различных размеров, в соответствии с ГОСТ. Производителями шин в настоящее время выпускается множество зажимов, соединителей и шинодержателей, облегчающих монтаж и обеспечивающих надёжный контакт. Зажимы предназначены для соединения жестких и гибких шин различного типа, биметаллические пластины — для алюминиевых и медных шин.

Шинодержатели выпускаются плоские, регулируемые плоские, компактные и усиленные, ступенчатые, а также универсальные.

Производителями предлагается широкий выбор изоляторов: опорные, проходные, изоляторы типа «лесенка». Все они используются для фиксации шин внутри шкафов и корпусов. Изоляторы одной стороной крепятся с помощью болтов к монтажному корпусу, с другой к ним крепится шина.

Шинный изолятор типа «лесенка»

Производителей меди и алюминия на рынке РФ можно пересчитать «по пальцам», точнее объединяющих их холдинги. Брендов электротехнических шин огромное количество, одних только марок мы насчитали более сотни (по всем типам шин) в виду этого нами принято решение развить эту тему и создать отдельный сайт полностью посвященный электротехническим шинам.

В этой связи приглашаем всех участников рынка электротехнических шин разместить информацию о своих продуктах на новом сайте.

Источник

Adblock
detector