Меню

Синхронизация дгу по мертвой шине

Параллельная работа (синхронизация) дизельных генераторов

Как в технической литературе, так и на производстве под параллельной работой дизельных генераторов (ДГУ) понимают их одновременную работу на одну и ту же нагрузку.

Необходимым условием включения в такую работу является обеспечение синхронности (совпадения частот), синфазности (совпадения фаз) и равенства э.д.с. включаемого генератора напряжению сети (или уже включенных генераторов).

Процесс, в ходе которого синхронный генератор включается в синхронную и синфазную работу с другими, механически не связанными с ним синхронными генераторами или электросетью, носит название синхронизация.

Задачи параллельной работы (синхронизации) дизельных генераторов.

Организация бесперебойного энергоснабжения на предприятии, как и создание автономной системы электропитания, требует принятия решения о выборе типа источника. Выбор в качестве источника электропитания нескольких дизельных генераторов, включенных в параллельную работу, определяется соответствием задач, которые решает такая система, конкретными производственными потребностями.

Использование параллельного соединения ДГУ позволяет решать следующие задачи:

  1. Задача обеспечения надежности:
    в аварийных ситуациях выход из строя одного генератора не приводит к перебоям в питании потребителей.
  2. Оптимизация работы в условиях, меняющейся в течение суток или в зависимости от сезона нагрузки:
    подключение дополнительной мощности в период пиковых нагрузок и отключение избыточной при спаде потребления.
  3. Кратковременная компенсация недостающей мощности основного источника электропитания, например, при подключении нагрузки с большими пусковыми токами.

Преимущества использования параллельной работы генераторов

С учетом перечисленных возможностей, использование параллельной работы генераторов дает неоспоримые преимущества в сравнении с источниками на базе одиночного генератора большой мощности. К ним можно отнести:

  • лучшие экономические показатели: стоимость нескольких небольших генераторов может быть существенно (до 30%) ниже стоимости одного равного им по суммарной мощности;
  • возможность и простота наращивания мощности: за счет подключения других ДЭС;
  • оптимизация коэффициента нагрузки генераторов с выходом на оптимальную мощность (загрузка не менее 70%);
  • экономное расходование ресурса генераторов: возможность отключения лишних генераторов в период спада потребления снижает расход топлива и сберегает моторесурс;
  • удобство эксплуатации и снижение затрат на обслуживание: за счет возможности вывода из эксплуатации отдельных ДГУ без отключения потребителей от электропитания;
  • экономия ресурса коммутационного оборудования: за счет работы с небольшими токами.

Виды (способы) синхронизации

На сегодняшний день практическое применение находят три способа включения дизельных генераторов в синхронную работу. Поскольку последствия неправильного включения достаточно серьезны: от обесточивания системы электроснабжения до повреждения самого генератора и устройств коммутации, каждый из способов в первую очередь ориентирован на обеспечение надежности и безопасности процесса.

Точная синхронизация

Обеспечить точное выполнение условий синхронизации – задача нетривиальная, однако, именно такой способ гарантирует безопасное включение генератора в параллельную работу.

Для ее решения в ручном режиме потребуется высокоточное измерительное оборудование и обученный персонал. Поскольку с большой точностью уравнять частоты вращения, выходные напряжения и обеспечить совпадение векторов фазных напряжений совсем непросто.

На практике для осуществления точной синхронизации используются специализированные автоматические устройства. Их задача – подать сигнал на включение генератора в синхронную работу в момент прохождения угла сдвига фаз через нулевое значение, что обеспечивает отсутствие бросков уравнительных токов.

Поскольку включение генератора не происходит мгновенно, импульс включения должен поступать с некоторым опережением. В зависимости от выбранного способа создания опережения, различают синхронизаторы двух типов:

  • с заданным временем опережения;
  • с заданным углом опережения.

Первые обеспечивают более точную синхронизацию и широко используются в системах с параллельно работающими генераторами.

Самосинхронизация

Применение этого способа включения генератора в параллельную работу предполагает:

  • предварительное уравнивание скорости вращения с точностью в пределах 3-5% от синхронной;
  • включение в работу с отключенной обмоткой возбуждения;
  • возбуждение генератора;
  • вхождение в синхронизм.

Преимущества такого способа – простая схема включения, отсутствие необходимости в сложной аппаратуре, быстрое вхождение в синхронизацию и, как следствие, надежность работы.

Из недостатков – существенное влияние на сеть переходных процессов, вызванных подключением невозбужденного генератора, которые сопровождаются значительными бросками тока в статоре и провалами напряжения. При этом величина тока никак не зависит от точности выполнения самой операции синхронизации, а определяется лишь параметрами генератора.

Однако, если понизить величину тока не представляется возможным, то сократить время протекания переходного процесса вполне реально. Так установлено, что для уменьшения времени действия броска уравнительного тока при самосинхронизации, достаточно немедленно дать перевозбуждение подключаемому дизель-генератору.

Грубая синхронизация (через индуктивное сопротивление)

Способ используется преимущественно в системах автономного типа не критичных к качеству электропитания. Является разновидностью самосинхронизации и позволяет обеспечить вполне приемлемый уровень безаварийного включения.

Отличие заключается в том, что после запуска генератора и достижения примерного равенства параметров (попадания в «окно синхронизации») подключении к шинам производится через индуктивное сопротивление (реактор). Это позволяет существенно снизить пиковое значение уравнительного тока и избежать существенного провала напряжения. После полного вхождения генераторов в синхронную работу индуктивность исключается из схемы с помощью переключателя.

Читайте также:  Приора 2009 can шина

Известны усовершенствованные способы грубой синхронизации, например, использование дополнительной управляющей обмотки статора генератора, подключенной к источнику постоянного тока. Ее отключение перед синхронизацией значительно увеличивает индуктивное сопротивление генератора, превращая его самого в реактор. Такое решение позволяет исключить из традиционной схемы дополнительные коммутаторы и индуктивное сопротивление.

Варианты исполнения параллельных систем

Как уже было отмечено, выбор источника определяется конкретными производственными потребностями: характером и мощностью нагрузки, наличием/отсутствием суточных или сезонных колебаний и другими параметрами. В то же время, практическое применение находит небольшое число параллельных систем. Приведем здесь наиболее распространенные варианты использования.

  • Система из нескольких ДГУ, синхронизируемая с сетью.

Используется для обеспечения безразрывного перехода на питание от генераторов во время действия пиковых нагрузок или высоких тарифов. Одновременно выступает в качестве резервного источника при отключении сети.

  • ДЭС с регулируемой в зависимости от нагрузки мощностью.

Работает в автоматическом режиме под управлением контроллера. Обеспечивает запуск и остановку генераторов в зависимости от изменения нагрузки, заданного приоритета и ресурса каждой установки.

Модульная конструкция (например, контейнер) используется в аварийных ситуациях, для обеспечения бесперебойного питания потребителей при проведении ремонтных работ. Позволяет легко наращивать мощность путем параллельного подключения нужного количества ДГУ и запуска их в синхронную работу.

  • Параллельный резервный источник с функцией сброса избыточной нагрузки.

Схема применяется для электропитания потребителей первой категории. По мере роста нагрузки происходит запуск генератора, синхронизация его с сетью и плавный прием нагрузки. При необходимости включаются дополнительные генераторы.

  • Параллельная схема с высокой скоростью синхронизации.

Используется для резервного питания. Обеспечивает одновременный запуск всех ДГУ в режиме самосинхронизации. Зарекомендовала себя в системах, где используются источники бесперебойного питания.

Источник

Параллельное подключение и работа дизельных генераторов

Порядок параллельного (синхронного) подключения и функционирования дизельно-генераторных установок требуется при существенной изменчивости среднего количества используемой мощности. Такой вариант повышает безопасность электроснабжения и экономичность использования ДЭС, снижает отклонения по частоте и напряжению при пульсациях нагрузки. Допускает перераспределение подключенной нагрузки без блокировки потребителей от внезапной остановки.

Какие задачи решает параллельная работа ДГУ?

Синхронизацию применяют в многоагрегатных ДЭС для существенного повышения рабочих показателей. Это способствует:

оптимизации нагрузки для отдельного генератора;

росту резерва единичной мощности;

увеличению долговечности сходных по типу генераторов;

улучшению эффективности циклов сброса-набора нагрузки.

Такая синхронизация ДГУ снижает наработку моторесурса каждого агрегата, тем самым уменьшая расходы на ТО. При этом уменьшается потребление масла, топлива и других материалов. При резервировании мощностей происходит повышение суммарного ресурса установок, увеличивается надежность и отдача вложений в энергоснабжение.

Параллельное соединение дизельных генераторов создает универсальную систему, работающую как в комплексе, так и самостоятельно. При этом запитанные в систему агрегаты могут находиться на удалении друг от друга. Синхронизация дизель генераторов повышает надежность работы агрегатов за счет равномерного распределения нагрузки. И даже поломка одной из ДГУ позволяет полноценно работать остальным.

Какие условия нужно соблюдать при синхронизации ДГУ

Параллельное соединение дизельных генераторов диктует выполнение условий, требуемых для безотказного подключения генераторов на синхронные действия, и уверенной работы при эксплуатации. Для этого используют либо ручное, либо электроавтоматическое регулирование. Синхронизация ДГУ требует соответствия по:

совпадению режимов ротации фаз.

При эксплуатации систем, которые состоят из некоторого количества ДГУ, применяют программаторы-контроллеры, созданные для синхронизации, контролирующие процесс при включении и отключении в привязке от загрузки. Чтобы получить близкие показатели по току, напряжению и частоте регулируют ток возбуждения и обороты ротора. Специальным прибором — фазоуказателем, упорядочивают совпадение фаз.

Виды синхронизации

Синхронная работа ДГУ осуществляется несколькими путями. Каждому из них присущи свои преимущества и слабые места, которые учитываются при выборе оптимального варианта.

Точная синхронизация

Этот процесс не занимает много времени и не оказывает негативного воздействия на оборудование, потому что не превышаются необходимые показания токов. Для этого соблюдают критерии:

угол векторов напряжения и тока не превосходит 10 градусов;

фазовая разность частот — не более 0,1%;

разница по напряжению между сетью и ДГУ — не превышает 1 -5% от способа регулирования.

Соблюсти условия можно настройкой токов возбуждения машины и за счет преобразования момента вращения вала. Преимущество этого способа в том, что при отсутствии ошибок промежуточные процедуры параллельного соединения ДГУ скоротечны. Недостатками такой синхронизации могут быть:

Читайте также:  Шина для велосипеда урал размер

сложность настройки и согласования параметров;

большой промежуток времени в десятки минут при необходимости быстрого включения в случае аварии;

возможность неполадок при наличии большого угла напряжения;

допустимость применения лишь на мощных электроагрегатах.

Самосинхронизация

Такой вариант не является сложным, дает возможность без проблем автоматизировать процесс. Существует достаточное количество схем и устройств, в которых реализован этот метод. Он позволяет уменьшить время подготовительных операций и обладает одним условием для подключения: различие скоростей вращения валов генераторов не должно превышать 2-3 Гц. Строгой настройки иных параметров в этом случае не производится.

Схема параллельной работы дизель-генераторов выглядит следующим образом:

Применение контроллеров гарантирует:

  • ручное, автоматическое и дистанционное управление ДЭС, работающей в параллели с другими, либо в одиночном режиме;
  • автоматическую синхронизацию и разделение нагрузки;
  • полный контроль параметров и защиту систем дизель электростанции.

Недостатками самосинхронизации являются: пониженное напряжение на шинах электростанции и рывки тока в цепях. Снижение может достигать 40 %, а срывы по току в 2-4 раза перекрывать номинальный.

Синхронизация через индуктивное сопротивление

Такой способ еще именуют грубой синхронизацией. Он достаточно простой, удобный и быстрый, с большой вероятностью безопасного подключения. При запуске ДГУ возникает возбуждение и последующее подключение на шину во время выхода на околосинхронные величины напряжения и частоты. Конечная самосинхронизация произойдет благодаря сопротивлению по прошествии образования электросвязи с сетью.

К недостаткам этого способа относят сильные вибрации. Его применяют на установках, у которых мощность проигрывает станциям централизованного энергоснабжения.

Источник

Параллельная работы ДГУ

Параллельная работы ДГУ — для чего применяется, что для этого нужно, особенности.

В данной статье мы поговорим о параллельной работе нескольких ДГУ на общую шину.

Для чего вообще применяется такой режим работы.

Обычно это 2 режима работы\ применения:

  1. Для увеличения передаваемой мощности для нагрузки, когда недостаточно единичной мощности одной ДГУ;
  2. Для увеличения надежности системы энергоснабжения, когда устанавливается избыточная по мощности ДГУ.

Это позволяет перераспределить подключенную нагрузку без отключения потребителей при внезапной остановке\аварии.

Еще бывает режим, когда обратный переход с резервного ДГУ на вернувшуюся «городскую» сеть тоже хочется сделать без отключения нагрузки. Этот режим называется параллельная работа с сетью. Но по факту применяется очень редко, т.к. усложняет процесс согласования такого режима с надзорными государственными органами.

И так – для начала разберемся с основами параллельной работы разных источников питания.

Основными условиями параллельной работы являются абсолютно одинаковые выходные электрические параметры источников питания, такие, как частота и напряжение.

Настройка частоты, или другими словами фазного угла (угол должен стремится к 0), влияет на распределение мощности между источниками. При большой разнице в частоте (> 1гц) один источник энергии относительно другого становится потребителем. Если говорить про ДГУ, то одна установка является генератором, а другая становится электромотором\потребителем. Такой режим естественно снижает эффективность и общее КПД системы, и даже может привести к выходу из строя генерирующего оборудования.

Частота напряжения ДГУ – это параметр, напрямую зависящий от оборотов двигателя. Обычно 50Гц соответствует 1500 оборотом\мин коленчатого вала двигателя. Чаще всего на ДГУ применяются двигатели с оборотами 750об\мин, 1500 об\мин, 3000 обо\мин.

За частоту в ДГУ отвечает топливная аппаратура или иными словами педаль газа. Сильнее нажимаем педаль, больше топлива подается в двигатель, быстрее двигаемся, т.е. увеличиваем обороты двигателя. Естественно на современных двигателях за подачу топлива отвечают электронные системы управления оборотами двигателя. Корректировка оборотов\частоты происходит в постоянном on-line режиме, чтобы вся мощность, вырабатываемая источниками, шла на потребителей. Это достигается путем организации физического информационного канала связи между электронными системами управления.

Теперь переходим к параметру напряжения. По ГОСТу у нас считается напряжение 380-415В для трех фазных и 210-230В для однофазных систем. Если напряжение различных источников будет разным, то между этими источниками потечет ток. Появляется обратная реактивная мощность. Это так называемый паразитный ток, который нагревает нам кабельные линии и обмотки генератора и тем самым негативно влияет на оборудование. За параметром напряжения и величиной обратной реактивной мощностью также отвечает электронные системы управления.

Таким образом современные электронные системы управления позволяют полностью в автоматическом режиме без участия человека проводить запуск\останов и управление системой из параллельно работающих ДГУ.

Соответственно при установке параллельного комплекса из 2-х и более ДГУ (от 4-х до 32шт) очень важным является условие, чтобы панели управления на всех ДГУ были одинаковые со встроенным синхронизатором, рассчитанные на параллельную работу, т.к. они постоянно обмениваются друг с другом информацией о состоянии и должны «разговаривать» между собой на одном цифровом языке.

Читайте также:  Сзи нсд аккорд амдз шина pci

Также для таких ДГУ обязательным условием является наличие на каждой установке защитного автомата-выключателя нагрузки с функцией удаленного управления (включение\выключение и информация о его состоянии)

При монтаже параллельных комплексов следует учитывать следующее:

  1. Общая силовая шина должна быть рассчитана на полную суммарную мощность всех параллельно работающих ДГУ при режиме увеличения мощности или за минусом мощности ДГУ, которая устанавливается в качестве резервной (избыточной);
  2. Рекомендуется общую шину организовывать максимально близко к ДГУ, в противном случае придется устанавливать на каждой линии ДГУ-шина еще дополнительные автоматы защиты (см. требования ПУЭ);
  3. К панели управления каждой ДГУ должны быть подключены контрольно-измерительные кабели для измерения собственного напряжения и частоты, и таких же параметров общей шины. Это нужно для того, чтобы панель сравнивала параметры и подстраивала параметры своей ДГУ под общую шину;
  4. Все панели должны быть объединены общей информационной шиной для обмена информацией о текущей загрузки и состоянии.

Далее поговорим о том, как проходит процесс синхронизации и параллельная работа дизельных генераторов в автоматическом режиме.

Процессы синхронизации разделяют на 2 типа:

  1. Мастер\ведущий и ведомый;
  2. Синхронизация на «мертвую» шину с отключенным возбуждение генератора.

Выбор того или другого типа должен быть определен на этапе проектирования и заказа оборудования, т.к. одновременно они работать не могут. Обусловлено это исключительно выбранными контроллерами и возможностями ДГУ.

Чаще применяется 1 тип синхронизации. Разберем по шагам как же происходит процесс в автоматическом режиме:

  1. Запуск всех ДГУ происходит одновременно по сигналу от АВР;
  2. При запуске защитные автоматические выключатели находятся в состоянии «выключено»;
  3. Далее каждая ДГУ проводит измерение напряжения на общей шине;
  4. При условии, что на общей шине нет напряжения, любая ДГУ, у которой в настойках установлен параметр, разрешающий подключение на пустую обесточенную шину, подает команду на включение своего защитного автомата. После получения обратной связи от автомата, что он замкнулся\включился ДГУ входит в режим ожидания подключения всех оставшихся генераторов. Если на всех ДГУ установлен разрешающий сигнал, то первой может быть абсолютно любая ДГУ (это уже определяется внутренними программами установленных на ДГУ панелей управления);
  5. После того, как первая ДГУ замкнула свой автомат, на общей шине появится напряжение. Остальные ДГУ увидят это напряжение и начнут процесс подстройки своих параметров (частоты и напряжения) под параметры общей шины, управляя топливной системой и регулятором напряжения. Когда параметры ДГУ сравниваются с общей шиной и какое-то время удерживаются в заданном окне (обычно это 3-5 сек), то подается команда на включение автоматов. В среднем процесс синхронизации занимает от 30 до 60сек. Максимальное время, отпущенное на синхронизацию ДГУ к общей шине 240сек. По окончанию этого времени ДГУ прекращает попытку синхронизироваться под параметры общей шины и выдается авария с соответствующим сообщением;
  6. В среднем на сбор всех генераторов на общей шине уходит те же 30-60сек, т.к. процесс идет у каждой ДГУ независимо, все синхронизируются к одному напряжению общей шины;
  7. После того, как панель ДГУ получила информацию от своего выключателя о замыкании на шину, синхронизатор выключается и сцепление генераторов происходит уже на электромагнитном уровне с небольшой корректировкой частоты и напряжения;
  8. Далее, после того, как все ДГУ подключились к общей шине, формируется сигнал разрешения в АВР на подключение нагрузки на ДГУ. Этот сигнал можно по-разному формировать, но самое надежное собрать информацию со всех автоматов о их состоянии «включен»;
  9. После подачи нагрузки на общую шину происходит ее автоматическое распределение в равных долях на все ДГУ. В зависимости от настроек системы после оценки общей нагрузки может происходить останов\запуск необходимого количества ДГУ для питания нагрузки. В случае сложности оценки динамики нагрузки, можно оставить принудительно в работе все ДГУ;
  10. После возврата сети, АВР формирует сигнал останова ДГУ. Все автоматы отключаются от общей шины, ДГУ встает в режим охлаждения, а АВР переключает нагрузку на питание от сети.

Еще важным и иногда необходимым является возможность включать в параллельный комплекс ДГУ разной мощности. При этом нагрузка будет также равными долями распределятся между ДГУ относительно их мощности.

Не рекомендуется включать в параллельный комплекс ДГУ разных производителей\брендов и с разными производителями альтернаторов, т.к. они имеют отличающиеся электрические характеристики.

Источник

Adblock
detector